

Transmission System – Total Cost of Ownership

February 2013

Featuring GatesAir's

Geoff Mendenhall
Technology Advisor

Transmission System - Total Cost of Ownership

presented by:

Geoffrey N. Mendenhall, P.E.

Harris Broadcast

A Gores Portfolio Company

Deliver the moment

INTRODUCTION

- High interest among broadcasters / RF network operators to reduce overall transmission facility cost of ownership
- Total Cost of Ownership (TCO) includes more than initial cost, energy cost, and maintenance of transmission equipment
- Acquisition, maintenance, operating, training costs of all required systems in transmission facility including cooling and floor space, must be considered to arrive at lowest TCO

TOPICS TO BE COVERED

- Definition of "Total Cost of Ownership" (TCO)
- All elements that determine the real, long term, "Total Cost of Ownership"
- Besides the reduction in direct operating costs, the benefits of reduced (TCO) include a reduction of carbon footprint in support of green technology.
- Comprehensive analysis is required including:
 - Trade off's between air and liquid cooling systems
 - Impact on the overall facility, floor space requirements, size, and the thermal efficiency of the transmitter building
- New evaluation process / analysis tool to design transmission facility for lowest (TCO) (work in progress)
- Example of the findings from a real world, transmission site (TCO) analysis

WHAT IS TOTAL COST OF OWNERSHIP?

- Acquisition cost of transmission equipment
- Installation cost of transmission equipment
- Operating cost of transmission equipment
- Maintenance cost of transmission equipment
- Acquisition cost of facility cooling system (HVAC, etc.)
- Installation cost of facility cooling system (HVAC, etc.)
- Operating cost of facility cooling system (HVAC, etc.)
- Maintenance cost of facility cooling system (HVAC, etc.)
- Periodic replacement cost for facility cooling system (HVAC, etc.)
- Acquisition or recurring lease cost of floor space required
- Training costs

OTHER FACTORS AFFECTING TCO

- Average outside air temperature at facility location
- Cost of energy at facility location
- Size, construction, and thermal efficiency of facility

TRANSMITTER SELECTION IMPACT ON TCO

- Physical size and foot print (FT²)
- Power density of transmitter (Watts / FT³)
- Type of cooling air or liquid
- Operating efficiency (AC to RF) of the transmitter
- AC power requirements (1) phase or (3) phase
 (polyphase may be more expensive to bring to some sites)
- AC input voltage and voltage regulation requirements
- Maintainability hot swappable modules, air or liquid filter replacement, and all other maintenance tasks
- Commonality of transmitter types spares sharing, common training, and operational requirements
- N+1 transmitter system architecture can reduce number of backup transmitters required

TRANSMITTER SELECTION IMPACT ON TCO

- Choice between air or liquid cooling of transmission equipment makes a significant difference in TCO
- Initial purchase cost of liquid cooled transmitter is typically higher than an equivalent air cooled transmitter
- Elimination of most air conditioning costs make breakeven period short and provide significant long term operational savings
- Typical air conditioning units require ongoing maintenance and replacement on a 5 to 8 year cycle
- Liquid cooled transmitters have significantly lower energy consumption than combined energy consumption of air cooled transmitter and required air conditioning

TRANSMITTER EFFICIENCY OPTIMIZATION

- 50v LDMOS power amplifier technology
- 95% efficient power supplies
- Advanced Real Time Adaptive Correction (RTAC)
- Advanced Crest Factor Reduction
- Variable speed cooling system air or liquid
- Sharing liquid cooling across multiple transmitters

FET TECHNOLOGY COMPARISON

Attribute	Si VMOS	28V RF- LDMOS	50V RF- LDMOS
CW eff. at P1dB	3	5	5
Power Gain	3	5	5
Thermal resistance	3	4	5
CW Packaged Power Density	3	3	4
High Intrinsic Zin / Zout (wideband)	3	3	4
On-Die Passives Integration	2	4	4
Variability / Performance spread	2	4	4
Technology Maturity	5	5	4
Reliability	4	5	5

Comparison of RF Power Attributes vs. Technology

Red = Poor
Yellow = Neutral
Green = Strength
(Scale 1 to 5)

FET TECHNOLOGY COMPARISON

Practical Pallet Gain 19dB in digital DVB-T operation and 21dB in FM operation

Typical efficiency of over 28% in DVB-T operation and 84% in FM operation

^{*} Ref. Freescale Semiconductor White Paper: "50 Volt LDMOS – An Ideal RF Power Technology for ISM, Broadcast and Radar Applications"

Flexiva (FAX) – High Power 5kW – 40kW

Efficiency

- -72% AC to RF Efficiency
- Significantly better than competitive products (8 -10%)
- Rivals tube-type transmitters at 30/40kW

Flexiva (FAX) – High Power – 5kW to 40kW

5k/10K

i om

20K

30K

40K

FAX High Power (5kW – 40kW)

TCO ANALYSIS TOOL

- Harris has developed prototype tool to analyze and calculate TCO for a broadcast transmission facility
- Visited Riverview ATC site to test tool
- Consider all elements in power consumption budget
- Transmitter make / model
- Transmitter cooling air vs. liquid
- Cooling system percent of total cost
- Transmitter percent of total cost
- Payback period (OPx vs. CAPx)

TCO ANALYSIS TOOL

Commisioning

Unit Cost

\$11,200,00

\$120,000,00

Transmitter	Model	Total Transmitter Acquisition Cost	HVAC Acquisition Cost	HVAC Installation Cost	Annual HVAC Maintenance (Per Ton)	Heat Is Ducted?	HVAC SEER Level	Annual Annual Rental Fee Preventative Maintenance		per visit Rate for Preventative Maintenance	First Year Training Cost	
Maxiva ULX ATSC	ULX-2400ATi	\$153,600.00	\$500.00	\$2,500.00	\$150.00		12	Price:	Per:	No. of Visits	iviaiiiteilalice	
IVIAXIVA ULA ATSC	ULX-2400A11	\$155,000.00	\$300.00	\$2,500.00	\$150.00	No	12	\$0.00	ft2	4	\$400.00	\$2,000.00
	Talouisian	 daa 400 00			Ć450							

\$150 per ton is industry standard

Region	Country/State		
USA	Texas		
Price Per kW/h:	\$0.065		

Source - IEA "Electricity Information 2010"

Liquid-Cooled UHF Multimedia TV Transmitter

Product Desription

First Year TCO **Lifetime Total Cost of Ownership** Fifteen Year TCO | Twenty Year TCO **Annual OPEX Five Year TCO** Ten Year TCO (includes acquistition costs & training) \$165,890.32 \$7,290.32 \$195,051.60 \$231,503.21 \$267,954.81 \$304,406.41 Transmitter TX Power Output TX Typical Power Model Typical Efficiency **Model Specifications Before Filter** Consumption Maxiva ULX ATSC ULX-2400ATi 2.500 W 9,617 W 26.00% **Annual Air Cooling Annual HVAC Annual Total Cooling Total Cooling Annual Cooling Air Cooling Total Heat Output Heat Output Indoors** Requirement (kW-Maintenance **Cooling Costs** Needed (BTU/H) Needed (Tons) Costs (100% AC) Hr) Costs (var. AC) 0 kW-Hr \$0.00 \$0.00 0 W 0.00 0.00 \$0.00 **Annual Cooling Annual HVAC Total Cooling Heat Output Annual Cooling Total Cooling Liquid Cooling** Requirement **Total Heat Output** Maintenance Indoors Costs Needed (BTU/H) Needed (Tons) Liquid +HVAC Costs 7,117 W 550 W 3,210 kW-Hr \$207.98 1,876.68 0.16 \$23.46 **Annual Total Electrical Annual Carbon How Many Cars Annual Transmitte** Annual Electricity **Annual Electricity** Consumption Costs (100% AC) Usage **Emissions (tons)** on the Road **Consumption Cost** Costs (var. AC) 87,452 kW-Hr \$5,458.88 \$5,666.86 \$5,458.88 52.47 9.9 **Efficient Volume Power Density Footprint** Height (RU) Height Width Volume (m3/ft3) **Dimensions** Depth (m³/ft³)(KW per m3/ft3) (m^2/ft^2) 2004.0 648.0 1550.52 403.08 77.37 1194.0 0.00 450.3 1145.1 370.3 682.3 167424.6 43524.58 0.00 1754.45 **Annual Service &** MTBF **Rental Costs** Maintenance Service Costs

\$0.00

\$1,600.00

125548

TCO COMPARISON TOOL

_	Harris #1	Harris #2	Competitor A	Competitor B
	Transmitter	Transmitter	RF Output Before Filter	RF Output Before Filter
	Maxiva UAX Digital	Maxiva ULX ATSC	2,500 W	2,500 W
	Model	Model	Power Consumption	Power Consumption
	UAX-2000	ULX-2400ATi	13,820 W	14,000 W
Transmitter Installed Cost	\$135,000.00	\$155,600.00	\$130,000.00	\$125,000.00
HVAC Acquisition Cost	\$5,200.00	\$500.00	\$3,657.71	\$3,715.87
HVAC Install Cost	\$7,500.00	\$2,500.00	\$7,500.00	\$7,500.00
Heat Ducted?	No	No	No	No
Cooling Method?	Air	Liquid	Air	Air
Annual Rental cost	\$0.00	\$0.00	\$0.00	\$0.00
Annual TX Maintenance Cost	\$1,600.00	\$1,600.00	\$1,600.00	\$1,600.00
Annual HVAC Maintenance per ton	\$150.00	\$150.00	\$150.00	\$150.00
\$150 per ton is industry standard				
		KWH Price:	\$0.065	

SEER Level

12

TCO COMPARISON TOOL

	Harris	Harris	Competitor A	Competitor B
RF Output Before Filter	2,500 W	2,500 W	2,500 W	2,500 W
TX Power Consumption	12,437 W	9,617 W	13,820 W	14,000 W
Annual Transmitter Consumption	108,948 kW-Hr	84,242 kW-Hr	121,063 kW-Hr	122,640 kW-Hr
Efficiency	20.1%	26.0%	18.1%	17.9%
Cooling Method	Air	Liquid	Air	Air
Ducted Heat Output	o w	o w	o w	o w
Heat Output Indoors	9,937 W	550 W	11,320 W	11,500 W
Liquid Cooling	0 kW-Hr	1,840 kW-Hr	0 kW-Hr	0 kW-Hr
# of PA	0	4	0	0
Air Cooling	24,752 kW-Hr	1,370 kW-Hr	28,197 kW-Hr	28,645 kW-Hr
Btu/H	33906	1877	38625	39240
Tons	2.83	0.16	3.22	3.27
HVAC Maintenance	\$423.83	\$23.46	\$482.82	\$490.50
Annual Cooling	24,752 kW-Hr	3,210 kW-Hr	28,197 kW-Hr	28,645 kW-Hr
Total Annual Power Consumption	133,700 kW-Hr	87,452 kW-Hr	149,260 kW-Hr	151,285 kW-Hr
Annual Cooling Costs	\$1,603.91	\$207.98	\$1,827.14	\$1,856.19
Carbon Emissions (Tons)	80.22	52.47	89.56	90.77
Annual Transmitter Consumption Costs	\$7,059.84	\$5,458.88	\$7,844.90	\$7,947.07
Annual OPEX	\$10,687.58	\$7,290.32	\$11,754.85	\$11,893.76
First Year TCO	\$158,387.58	\$165,890.32	\$152,912.56	\$148,109.63
5 Year TCO	\$201,137.90	\$195,051.60	\$199,931.97	\$195,684.67
10 Year TCO	\$254,575.80	\$231,503.21	\$258,706.23	\$255,153.46
15 Year TCO	\$308,013.70	\$267,954.81	\$317,480.49	\$314,622.26

TCO COMPARISON TOOL

HVAC - AIR COOLED TRANSMITTER

- Pros
 - Familiar technology
 - Simplicity No concern about liquid spills
- Cons
 - Higher initial cost of A/C equipment
 - Higher total energy cost
 - Higher maintenance cost
 - High replacement cost of A/C equipment shorter life cycle

LIQUID COOLED TRANSMITTER

Pros

- Lower overall energy cost
- Less floor space higher power density
- Lower initial cost of heat exchanger no duct work
- Lower maintenance cost no air filters to clean
- Less frequent replacement cost longer life cycle
- Much lower noise level
- Ratio of heat transported by liquid vs. heat liberated into air
- Can be integrated into facility cooling loop or geothermal cooling loop
- Highly evolved and desired in DTV installations

Cons

- Less familiar technology to radio broadcasters
- Higher initial cost of transmitter quickly offset by power savings
- Concern about liquid spills unlikely with new technology

LIQUID COOLED UHF PA MODULE

Module weight < 20kg

RF Pallets (4)

Coolant blind mate connectors

Output RF Connector

MAXIVA LIQUID COOLED UHF PA MODULE

User replaceable sub-assemblies shown

AC-DC Converter Module

MAXIVA ULX – FRONT VIEW

MAXIVA ULX – REAR VIEW

COOLING SYSTEM BLOCK DIAGRAM

HIGH EFFICIENCY PUMP MODULE

LIQUID TO AIR HEAT EXCHANGER

- Compact size (Two sizes available, Tx dependent)
- Two Configurations Horizontal or Vertical airflow
- Redundant variable speed fans

(50kW Dissipation unit shown, 12kW system is smaller)

TCO - OPTIMIZATION SUMMARY

- Selection of transmission equipment
- Consider all acquisition, operating and maintenance costs
- Consider all elements in power consumption budget
- Cooling technology used in transmitter has large impact on TCO
- Volume and floor space of transmission equipment affects TCO
- Building efficiency

ACKNOWLEDGEMENTS:

- Ed Allen Cox Media
- Roz Clark Cox Media
- Stefan Wallner Harris Corporation
- Victor Fenix Harris Corporation
- Tim Anderson Harris Corporation
- Rich Redmond Harris Corporation
- Monica Collins Harris Corporation

Questions?

Geoffrey N. Mendenhall, P.E.
Harris Broadcast
email: gmendenh@harris.com
Visit our website at:

http://www.harrisbroadcast.com/

