

ATSC 3.0 Real World Experience

April 23, 2017

GatesAir Connect @ NAB Show 2017

GatesAir's

Steven Rossiter TV Systems Applications Engineer

Connecting What's Next

ATSC 3.0 Real World Experience

Transmit Television

ATSC 3.0 On Air

Summer 2016, WRAL

WRAL begins broadcasting in next-gen TV technology

WRAL begins broadcasting in next-gen TV technology

AUBURN

Proprietary and confidential. | 2

Transport

Transmit Television

LIVE

O 5 Reactions

y <>

ATSC 3.0 A World Series Hit

World Series 2016 broadcast in Cleveland with hometown Indians

Transport

The New GatesAir XTE Exciter makes another Hit at the World Series 2016

Proprietary and confidential. | 3

ATSC 3.0 MBC Korea

- NABSH
- 4 transmitter SFN for Munhwa Broadcasting Company (MBC), Seoul
 - Gwanak Mtn
 - Namsan
 - Gwangyo Mtn
 - Yongmoon

Yongmoon Air Cooled UAXT Transmitter

Gwanak Liquid Cooled Transmitter Proprietary and confidential

Transport

Transmit Television

ATSC 3.0 MBC Korea

Proprietary and confidential. | 5

Transport

Transmit Television

Real World Experience

ATSC 3.0 is a OFDM modulation, similar to:

- DVB-T
- DVB-T2
- ISDB-T
- And others

Proprietary and confidential. | 6

Connecting What's Next

Coverage & Planning

Transmit Television

ATSC 1.0

Coverage was calculated by antenna companies, similar to analog.

The Era of Change

ATSC 3.0 The Modulation Parameters now have a large affect on coverage

Modulation Parameters ATSC 1.0 vs ATSC 3.0

ATSC 1.0

None

ATSC 3.0

- QPSK, 16 QAM, 64 QAM, 256 QAM, 1024 QAM & 4096 QAM
 Low Density Parity Check (LDPC) Forward Error Correction (FEC), inner coding:
- Length: 16200 Bits or 64800 Bits
- Code Rates: 2/15, 3/15, 4/15, 5/15, 6/15, 7/15, 8/15, 9/15, 10/15, 11/15, 12/15, and 13/15

Fast Four Transform (FFT size)

8k, 16k & 32k

Guard Interval

27.7usec, 55.5usec, 74.07usec, 111.11usec, 148.1usec, 222.2usec, 296.3usec, 351.9usec, 444.4usec, 527.8usec, & 592.6usec

Bose, Chaudhuri, Hocquenghem (BCH) outer coding:

On or Off

Scattered Pilots:

- Time (2 or 4) & Density (normal or dense)
 Frame Duration:
- 100ms, 150ms, 200ms, & 250ms

Proprietary and confidential. | 10

Transport

Transmit Television

The signal-to-noise ratio (SNR) and the data rate have a direct relationship to the distance the ATSC 3.0 signal can be received. The lower the signal-to-noise ratio (SNR) the further away from the transmission source the signal can be received. The higher the signal-to-noise ratio the less distance from the transmission source the signal be received.

Proprietary and confidential. | 11

ATSC 1.0 (19.39Mbit/s) 15.2dB SNR

ATSC 3.0 (19.5Mbit/s) 11.5dB SNR

6.1% coverage increase with ATCS 3.0

Proprietary and confidential. | 12

Transmit Television

ATSC 3.0 coverage is still based on the following variables the same a ATSC 1.0:

- Antenna Height above average terrain
- Antenna Gain
- Length and size for the Transmission line (Losses)
- RF System (Losses)
- Transmitter Power Output

ATSC 3.0 Modulation Parameters

- Data rate 0.83 to 57.0 Mbit/s (dependent on modulation Parameters)
- Signal-to-noise ratio -5.5dB to 36.5dB (dependent on modulation Parameters)

Proprietary and confidential. | 13

ATSC 3.0 1096QAM(39Mbit/s) 23.05dB SNR

ATSC 3.0, QPSK, 6.5 Mbit/s, 1.97dB SNR

Field strength coverage Field strength coverage 28/1/2017 20:51:53 28/1/2017 20:7:55 Site: Salina, KS Site: Salina, KS Modulation: ATSC 3.0 Modulation: ATSC 3.0 Model: ITU-1812-4 Model: ITU-1812-4 Frequency: 539Mhz Ch25 Frequency: 539Mhz Ch25 TPO: 36.4kW pre-filter TPO: 36 4kW pre-filter Antenna Gain: 13.0dBd Antenna Gain: 13.0dBo Antenna Type: Omn /Slot antenna Antenna Type: Omn (Slot antenna) Antenna Beam Tilt: -1.25* Antenna Beam Tilt: -1.25° Antenna Null Fill: 20% Antenna Null Fill: 20% AHAGL: 311.9m (1023.4ft) AHAGL: 311.9m (1023.4ft) Line Type: 6-1/8" 500hm rigid Line Line Type: 6-1/8" 50Ohm rigid Line Line Losses 1 32dB Line Losses:-1.32dB Mask Filter Losses:- 30dB Mask Filter Losses', 30dF ERP: 500kW ERP: 500kW Map coverage: 34.7% Map coverage: 60.0% C/N Ratio: 23.05dB (4096QAM) C/N Ratio: 1.97dB (QPSK) _____ 50 km db.//m -78 dBr 26 dBuV/m -99 dBm dBu///m -71 dBr 35 dBullim -90 dBo t dBullion 44 dBa 44 dBuV/m -81 dBm 24 (0.10m A7 (0m 53 dBuV/m -72 dBm A da Alim AD da 62 dBuV/m -63 dBm 02 db/V/m -43 dBr 1 dBuV/m -54 dBm 69 40-A/m -36 40-80 dBuV/m -45 dBm of all other de alle 89 dBullin -26 dBm 03.48.00m-22.48 98 dBuV/m -27 dBm C -D -D -D -D -D -D -107 dBuV/m -18 dBm t7 dBoWm .4 dBm 116 dBuV/m -9 dBm 124 dBuV/m -1 dBm 125 dBuV/m 0 dBm

All that changed was the Modulation parameters

Proprietary and confidential. | 14

Transport

Transmit Television

Questions

Proprietary and confidential. | 15

Transmit Television

Connecting What's Next

Thank You!

Steven Rossiter TV Systems Applications Engineer

Transmit Television

