

Spectrum Repack Your RF Plant and What to Consider

April 19, 2016 NAB Show 2016

GatesAir's

Martyn Horspool Product Manager, TV Transmission

Spectrum Repack – Your RF Plant and What to Consider

Martyn J. Horspool GatesAir Mason, Ohio, USA

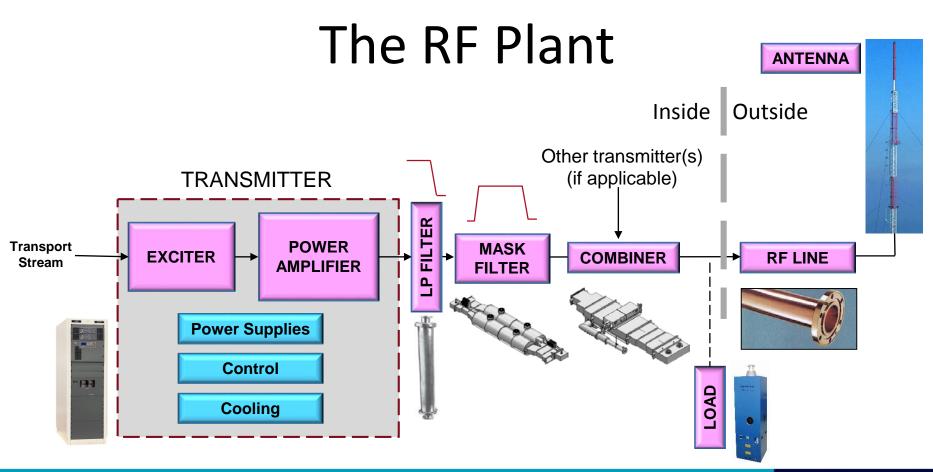
connected technologies • immersive experiences • redefined revenu

e

unieasn

Change is Coming – Like it or Not!

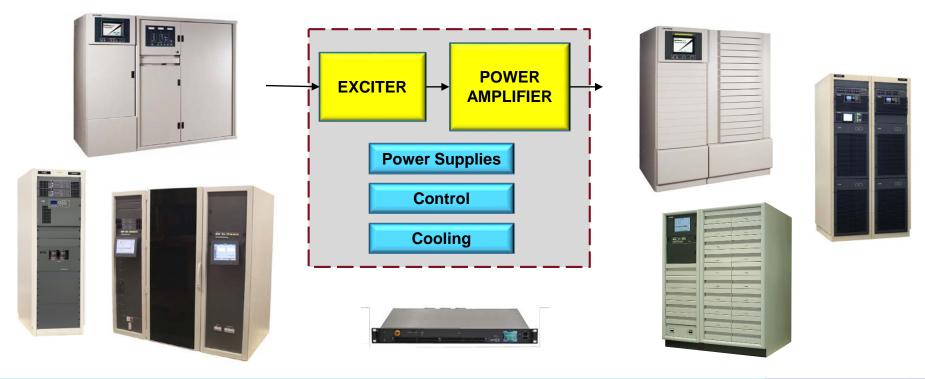
unleash



Will I Be Impacted By Repack?

- Repacking *could* affect any station, on any channel, in any market.
- Likely impact: 800 to 1100 TV stations
- So what items in my RF plant could be impacted?

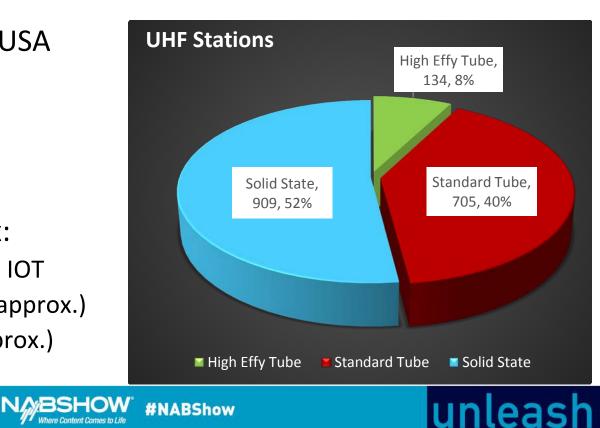
ALMOST EVERYTHING !



Transmitter

Transmitter Channel Changing

Transmitter Channel Changing

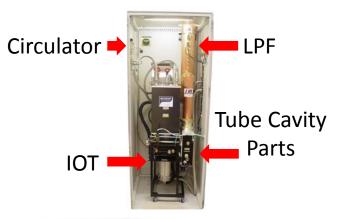

#NABShow

- Channel Change Checklist:
 - ✓ Can my transmitter be channel changed?
 - \checkmark Is it worth doing & how hard is it to do?
 - \checkmark Is the manufacturer still around?
 - \checkmark Is it still in production?
 - ✓ Is it near EOL?
 - ✓ How efficient is it?
 - ✓ Operating cost vs. new tx?

Current Technology Mix

- 2,261 TV Stations in USA
 - Low V: 53
 - High V: 460
 - UHF: 1,748
- VHF: All Solid State
- UHF Technology Mix:
 - 909 Solid State / 839 IOT
 - 705 Standard IOT's (approx.)
 - 134 MSDC IOT's (approx.)

Standard IOT Channel Change


- Most models out of production now
- Parts potentially impacted:
 - Exciters
 - IPA/Driver may be "banded"
 - Circulators (2 or 3 bands)
 - Special input cavity Ch 38-40 for E2V 2100, or 2130 tubes
 - IOT Coupling Loops and Cavity Domes
 - RF System Components:
 - Low Pass filter, fine matchers
 - Mask Filter, Magic Tee, etc.
- Re-tuning and power calibration

MSDC IOT Channel Change

- A few tx models are still in production
- Wideband in general, only a few issues with a channel change
- Circulators (Typically 2 or 3 bands)
- Low Pass Filters (2 bands):
- Tube variations:
 - Check with tube supplier
 - E2V Ch 50 was a problem special tubes supplied
 - Cavity coupling loops and domes (same as std. IOT)
- Retuning and Power Calibration

Solid State Channel Change

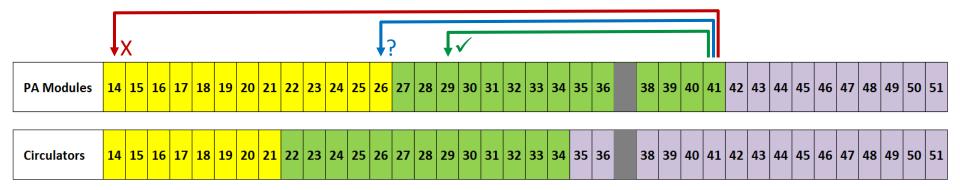
 Many early solid state ATSC systems are not fully broadband

 Newer transmitters are broadband, or can be changed very easily

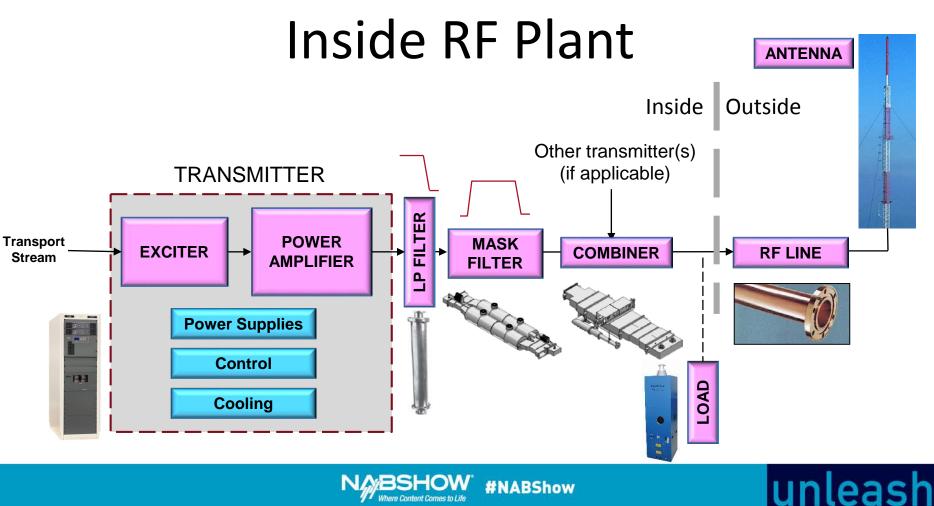
Note: Size difference -New tx is actually more powerful than the old one

Solid State Channel Change

Early ATSC Tx - Example: GatesAir DiamondCD

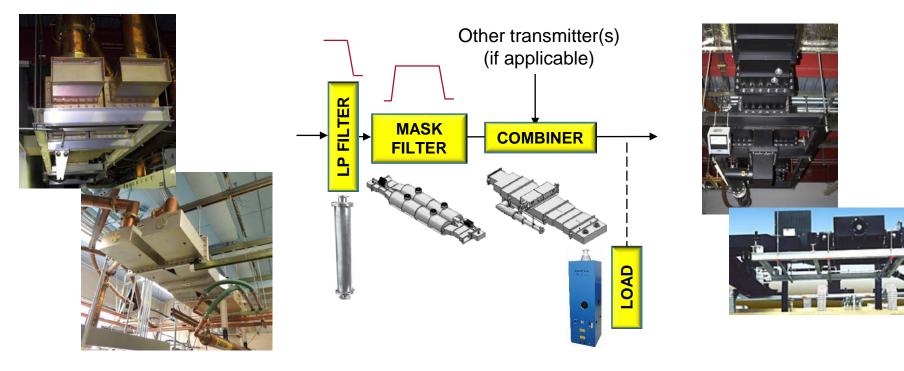

- Circulators -3 Bands, can be replaced
- PA Modules 3 Bands, *cannot* be replaced (not in production)

PA Modules	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	38	39	40	41	42	43	44	45	46	47	48	49	50	51
Circulators	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	38	39	40	41	42	43	44	45	46	47	48	49	50	51



Channel Change Scenarios

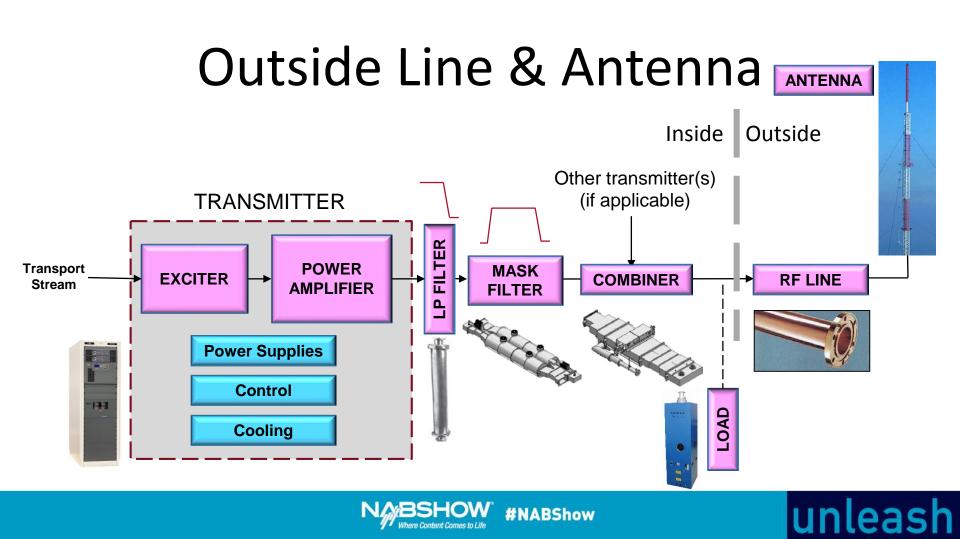
- **Example 1** Ch41 to Ch29 Okay, replace circulators
- Example 2 Ch41 to Ch26 Outside PA range, but may work with slightly lower power level or degraded specs. (need to test)
- Example 3 Ch41 to Ch14 Will not work, well outside of PA band



NA/BSHOW **#NABShow** Vhere Content Comes to Life

Inside RF Plant

Inside RF Plant


- Items likely to be channel-specific
 - Mask filters
 - Some newer types are tunable mostly lower power
 - Most in service today are *not tunable* REPLACE
 - Combiners/Magic Tee's
 - Channel specific MAY be possible to move +/- 1 channel
 - Consult with manufacturer for details

Inside RF Plant

- Other items that may be channel-specific
 - Low Pass (Harmonic Filters)
 - Usually 2 or more bands in UHF (check)
 - Directional Couplers
 - Check coupling values sweep
 - Test Load
 - Should be okay but may have fine matchers (re-tune)

Outside Transmission Line

• Long runs of rigid line are not fully broadband!!

COAXIAL LINE STICK LENGTHS, 1.5MHz GUARD BAND																			
Line Size	Channel																		
Line Size	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
20																			
19-3/4																			
19-1/2																			
	Channel																		
Line Size	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51
20																			
19-3/4																			
19-1/2																			

#NABShow

Prohibited Channel per Catalog

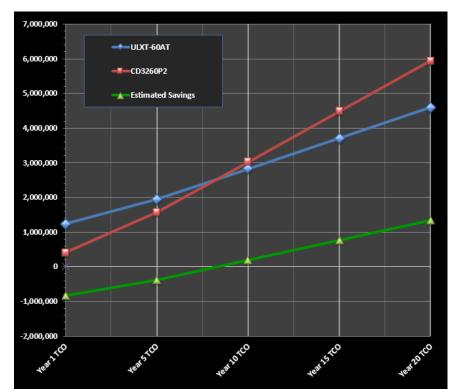
Antenna & Tower

- About 90% of the UHF installed base in USA are pylon (slot) antennas
 - May work one channel down, but no more
- As frequency goes down, antennas get larger and heavier (for same gain)
- New ANSI/TIA-222- revision G in effect
 - Structural analysis likely required
- Think carefully about VHF (big antennas)

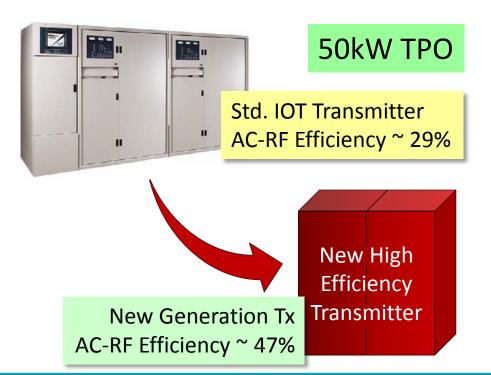
Tx - Replace or Channel Change?

#NABShow

- Evaluate the cost of channel changing versus buying a new tx
- Estimate Total Cost of Ownership
- Remember that new transmitters are generally *much* more efficient than those built only a few years ago
- Many other factors redundancy, size, safety, etc...

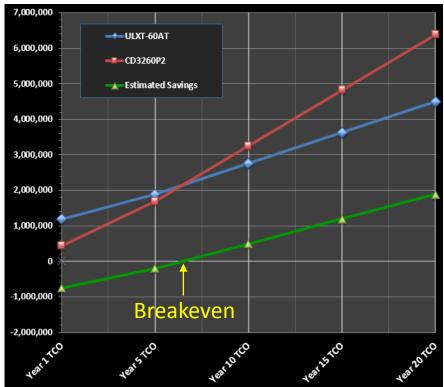

26% to 29% Typical Efficiency

42% up to 50% Efficiency


TCO Analysis Tool

- Calculates the total cost of ownership of a transmitter system
- Compares TCO of a new GatesAir transmitter versus your existing transmitter
- Adjust utility costs and other factors to match your scenario
- Calculate total savings over time
- Estimates a break-even period
- ROI will vary depending on many factors, including cost for new equipment, AC power cost, maintenance, room heat load, etc.

Example 1- Std. IOT to Solid State

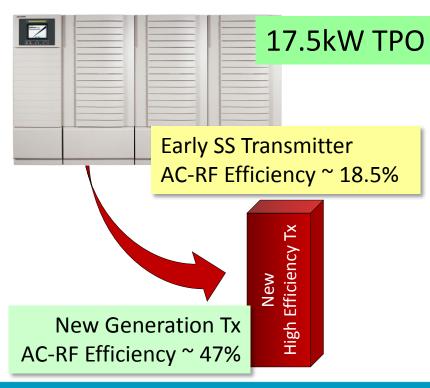

- AC power savings
- Smaller footprint
- No high voltages
- No "tuning"

#NABShow

- Less expertise needed
- Minimal servicing

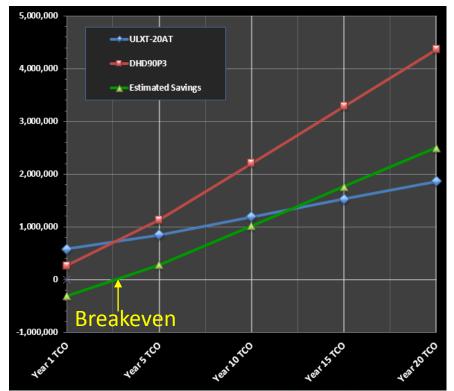
Example 1- Std. IOT to Solid State

- Old tx efficiency 28.6%
- New Tx Efficiency 47%
- Power cost 17¢/kW-hr
- New Tx cost \$1.1M
- Breakeven in 6.4 years


Example 1 - Effect of Power Cost

Power Cost	Payback
8 c/kW-hr	13.4 Years
10 c/kW-hr	10.8 Years
14 c/kW-hr	7.8 Years
18 c/kW-hr	6.0 Years
22 c/kW/hr	5.0 Years

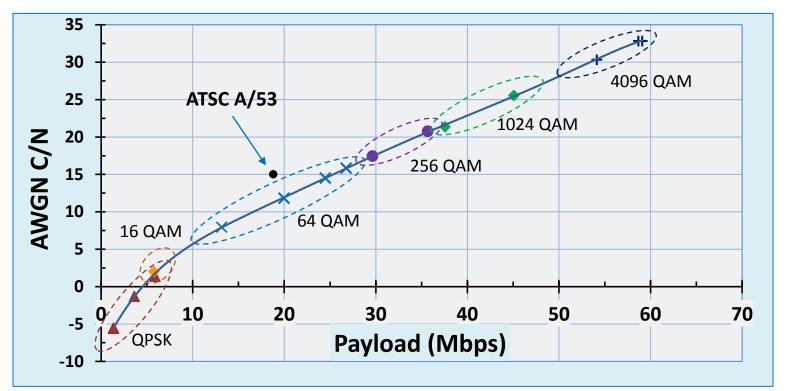
Ex. 2- Solid State to Solid State


- Older Tx very inefficient
- AC power savings
- Change from Air-cooled to Liquid-cooled
- Far Smaller footprint
- Minimal servicing

Ex. 2- Solid State to Solid State

#NABShow

- Old tx efficiency 18.5%
- New Tx Efficiency 47%
- Power cost 17¢/kW-hr
- New Tx cost \$500k
- Breakeven in 3.1 years
 (4.2 years at 12 c/kW/hr)



Repack and ATSC 3.0

- Repack and ATSC 3.0 on different timelines
- Can I do anything now to make the transition to 3.0 easier?
 - Purchase equipment that is 3.0 Ready
 - Plan ahead for the power level required (*if known yet*)
 - Different PAR's, 6dB vs. 8dB impact on pk. voltages throughout RF chain (Transmitters, Filters, Line, Loads, Antenna)
 - Consider V-Pol for future mobile services
 - Many variable parameters versus none for ATSC 1.0 (next slide)

ATSC 3.0 - Payload vs. C/N

Repack Recap

- Can my existing transmitter, mask filter, RF line, antenna and other items be used on another channel?
- Is my existing transmitter still in production and can it still be serviced and supported properly?
- Consider energy savings and TCO
- Do you have a plan for staying on air during the channel change?
- If possible, when updating or replacing equipment, check if it can be used (or easily updated) for use with ATSC 3.0.

Spectrum Repack – Your RF Plant and What to Consider

Questions?

Martyn J. Horspool GatesAir Mason, Ohio, USA

connected technologies • immersive experiences

e

redefined revent

unieasn