

## New Technology DVB-T2 Products from GatesAir

March 19, 2015

GatesAir's



Martyn Horspool Product Manager, TV Transmission

Connecting What's Next



## New Technology DVB-T2 Products from GatesAir

Martyn Horspool Product Manager, TV Transmission GatesAir Mason, Ohio, USA

## **Introduction & History of GatesAir**





- 1922 Gates Radio starts business. Parker Gates was only 15 years old
- 1950 Gates Radio had become a major Radio equipment supplier in USA
- 1957 Harris Corporation acquires Gates Radio
- 2013 Gores Group acquires Harris Broadcast Division
- 2014 Harris Broadcast splits into two companies – Imagine Communications and GatesAir



# **GATES/**IR



Proprietary and confidential. | 4

## **End-to-End Terrestrial Transmission Solutions**





## **GatesAir Products Support All Standards**







Proprietary and confidential. | 6

### **Product Portfolio**





Networked Digital Radio Studios Contribution & Distribution: IP - TDM - RF

AM - FM - DAB Analog & Digital VHF - UHF Analog & Digital

Proprietary and confidential. | 7



## **Television: Maxiva Product Family**





Proprietary and confidential. | 8

## **Advanced Technology**





- Broadband High Efficiency technology for lowest cost of ownership
- Software defined modulation capability addresses today's needs and tomorrow's opportunities



ULXT

## **Actively Defining the Future of Broadcasting**



## GatesAir is an active member, partnered with, or sponsors:

- ATSC
- **DVB** Project Office
- World DMB
- DRM Consortium
- Ibiquity (HD Radio)
- Mackenzie University, São Paulo, Brazil
- ABU, Asia-Pacific Broadcast Union









Connecting What's Next

## **DVB-T2** Review

DVB-T2



- DVB-T2 is currently the most advanced digital terrestrial television (DTT) system
- More robustness
- More flexible
- 50% more efficient than any other DTT system available today
- Supports SD, HD, UHD, mobile TV, or any combination of these







- DVB-T2 works with both fixed and portable receivers
- Large capacity increase over DVB-T, with similar planning constraints and conditions as DVB-T
- Improved Single Frequency Network (SFN) performance compared to DVB-T
- Includes a mechanism for service-specific robustness (i.e. provide different levels of robustness to some services compared to others. Also possible to target some services for roof-top reception and other services for portable reception
- Provides bandwidth and frequency flexibility
- Provides the ability to reduce the peak-to-average ratio (PAPR), in order to reduce transmission costs



- Like its predecessor, DVB-T2 uses OFDM (orthogonal frequency division multiplex) modulation with a large number of sub-carriers delivering a robust signal, and offers a range of different modes, making it a very flexible standard.
- DVB-T2 uses the same error correction coding as used in DVB-S2 and DVB-C2:
  - LDPC (Low Density Parity Check) coding
  - **BCH** (Bose-Chaudhuri-Hocquengham) coding, offering a very robust signal. The number of carriers, guard interval sizes and pilot signals can be adjusted, so that the overheads can be optimized for any target transmission channel.

## Main Advantages of DVB-T2

- New generation Forward Error Correction and 256 QAM
  - Capacity gain of > 30%
- OFDM carrier increase up to 32k and additional guard Interval selections
  - In SFN can provide up to 18% overhead gain
- Rotated Constellations
  - Robust transmission in difficult conditions
- Bandwidth extension
  - 2% payload gain
- Extended Interleaving
  - Including bit, cell, time and frequency interleaving
- Multiple PLP's (Physical Layer Pipes)
  - See next slide
- DVB-T2 Lite
  - Optimized for Mobile applications





GATE

Simplified Explanation of Concept:

- All PLPs are broadcast over the same frequency (TV channel)
- Every PLP carries an MPEG-TS
- Every PLP has its own modulation, FEC code rate and interleaving
- PLP-based robustness configurations allow adjustment bandwidth and coverage area per PLP





## **DVB-T and DVB-T2 Comparison**



|                                                | DVB-T                                                               | DVB-T2                                           |
|------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------|
| Forward error correction<br>(FEC) & Code Rates | Convolutional Coding + Reed<br>Solomon 1/2, 2/3, 3/4, 5/6, &<br>7/8 | LDPC + BCH 1/2, 3/5, 23, 3/4, 4/5, &<br>5/6      |
| Modulation                                     | QPSK, 16QAM, & 64QAM                                                | QPSK, 16QAM, 64QAM & 256QAM                      |
| Rotated constellation Mode                     | N/A                                                                 | Rotated or None rotated modes                    |
| Guard intervals                                | 1/4, 1/8, 1/16, & 1/32                                              | 1/4, 19/256, 1/8, 19/128, 1/16,<br>1/32, & 1/128 |
| Discrete Fourier Transform<br>(DFT size)       | 2k & 8k                                                             | 1k, 2k, 4k, 8k, 16k, & 32k                       |
| Scattered Pilots                               | 8% of total                                                         | 1%, 2%, 4%, or 8%                                |
| Pilot Patterns                                 | N/A                                                                 | 8 Patterns Available                             |
| Continual Pilots                               | 2.6% of total                                                       | 0.35% of total                                   |
| PLP's                                          | One                                                                 | Single or Multiple PLP                           |



## **DVB-T2** Lite



- The DVB T2-lite profile was added in June 2011 to the DVB-T2 standard v1.3.1 as Annex I
- The T2-Lite profile is mostly a subset of the DVB-T2 standard which is now called the "DVB T2-base" profile
- Two additional code rates were added for improvement of mobile performance

| DVB-T2 Lite           |                                                                            |
|-----------------------|----------------------------------------------------------------------------|
| FEC block size        | LDPC 16k only                                                              |
| Code Rate             | 1/2, 3/5, 2/3, 3/4, <b>2/5</b> *,1/3*<br>(* New code rates)                |
| Constellation Size    | QPSK, 16QAM, 64QAM, 256QAM (up to code rate 3/5)                           |
| Rotated Constellation | Only for QPSK, 16QAM and 64QAM                                             |
| Guard Interval        | Reduced set of combinations of FFT size, guard interval and pilot pattern. |
| FFT size              | 2K, 4K, 8K, 16K, 16K ext.                                                  |
| Scattered pilots      | PP8 not allowed                                                            |
| Max. Bandwidth        | 4 Mb/s                                                                     |
| P1 Signalling         | New signaling for T2-mobile SISO/MISO                                      |
| L1 Scrambling         | Optional scrambling of L1-post only or<br>entire L1                        |

## **DVB-T2** Lite



- The T2-Lite signal may either be transmitted as a stand-alone signal ie. in a regular PLP, or as a T2-Lite signal with FEF parts.
- The Future Extension Frame (FEF) carries a T2 Frame dedicated for mobile services and may have different modulation parameters (FFT size, Guard Interval, SFN/MISO, Pilot pattern) than the other T2 Frame to improve mobile reception. The FEF interval and size of the T2-Lite super frame can be defined in the T2 Gateway. The maximum duration of a FEF part is 1 second.



## **DVB-T2 Lite Summary**



- The T2 Lite profile allows a 50% smaller chip size extends battery life
- T2 Lite and normal T2 Base signals can be transmitted together in a single multiplex, to allow separate optimization for each receiver type



DVB-T2 1.3.1 Provides both optimum waveform (Fixed vs. Mobile) & Multiple PLP Robustness (Outdoor vs. Indoor)

## Programs Per RF Channel – Analog / T / T2





Proprietary and confidential. | 2'



## **Summary of Main DVB-T2 Benefits**



- Flexibility for network design
  - Frame rates, bit rates, modulation rates, Guard Intervals, etc. to fit what any particular operator desires to achieve.
- Pilots (fixed and scattered) to enable receiver lock in tough conditions (channel estimation)
- PAPR reduction techniques
  - TR and ACE
- Performance limits very near theoretical Shannon limit
- Multiple PLP's
- T2-MI for multiplex management
- FEF's for other data formats (LTE-A+), T2-Lite

## **DVB-T2** Resources for Further Reading



- Useful documents are available to assist in better understanding DVB-T2 and network planning aspects:
  - 1. DVB-T2 Fact sheet (Copy on Thumb Drive)

DVB.org web site: <a href="http://www.dvb.org/technology/dvbt2/">http://www.dvb.org/technology/dvbt2/</a>

2. Frequency and Network Planning Aspects of DVB-T2 (Copy on Thumb Drive)

EBU Technical Document 3348: <u>http://tech.ebu.ch/publications</u>

3. DVB-T2 Standards (ETSI EN 302 755 V1.3.1 and others) (Copy on Thumb drive)

DVB.org web site: <u>https://www.dvb.org/standards?\_\_\_noframe=8031</u>





## GatesAir High Efficiency Transmitters

## **High Efficiency TV Transmitters**





Connecting What's Next



## **Review of Selected Products**



Note: Refer to individual product presentations



Maxiva<sup>™</sup> ULXT Liquid Cooled







Maxiva™ UAXT Ultra Compact Air Cooled





## TCO – Total Cost of Ownership



### Total Cost of Ownership - General Definition

Total **C**ost of **O**wnership is the total cost of acquisition and operating costs over the asset life cycle. A TCO analysis can be used to gauge the viability of any capital investment



## **TCO versus Efficiency**



## TCO is what is really important to a transmission operator:

- It's the total cost to own and operate the transmitter system over time
- Includes initial equipment cost and delivery
- Includes the installation/commissioning cost
- Routine and unscheduled maintenance costs
- Repair/replacement and other operational costs

### AC power consumed by the transmitter is important

- However, other factors also affect the system efficiency:
  - AC transformers and voltage regulators
  - Heat load to the room (HVAC costs)
  - RF system losses (often significant)
  - RF feeder losses
  - Non-optimal antenna pattern





### **Transmitter Efficiency Basics**



### Efficiency of a transmitter:

• Definition: (RF Power Out / AC Power In) x 100%



Increased efficiency: reduces power consumed and reduces energy wasted

Proprietary and confidential. | 30

## **Typical Class AB Tx Efficiency**



- Example: 5kW Standard Class AB DVB-T2 transmitter
- Efficiency 5/25 x 100% = 20%



Input power 25kW Waste heat 20kW

Proprietary and confidential. | 3

## **Typical High Efficiency Tx**



- Example: 5kW Doherty DVB-T2 transmitter
- Efficiency 5/13.2 x 100% = 38%



Input power reduced: (25-13.2)/25 = **47.2%** Waste heat reduced: (20-8.2)/20 = **59%** 

### **Transmitter Efficiency Includes...**





Connecting What's Next

and confidential. | 33



## **Space Efficiency Improvements**







2014

Proprietary and confidential. | 34





Proprietary and confidential. | 35

Connecting What's Next

ークノ

## **Cooling and TCO**



- Three common cooling methods for broadcast transmitters
  - 1. Air-cooled using outside air
  - 2. Air-cooled using inside air and Air-Conditioning
  - 3. Liquid cooling of Tx
- Each of these has some advantages and disadvantages











Proprietary and confidential. | 37



## Air Cooling – Sealed Room HVAC





Proprietary and confidential. | 38





Proprietary and confidential. | 39



| ltem              | Air-Cooled<br>(outside air) | Air-Cooled<br>(HVAC) | Liquid Cooled    |
|-------------------|-----------------------------|----------------------|------------------|
| Energy cost       | Low                         | High                 | Low              |
| Maintenance       | Very High                   | Medium               | Low              |
| Installation cost | High                        | Medium               | Medium/Low       |
| Site visits       | Frequent                    | Infrequent           | Infrequent       |
| Humidity control  | None                        | Excellent            | Excellent        |
| Dust & dirt       | Filter dependent            | Excellent            | Excellent        |
| Reliability       | Medium                      | Medium               | Good/Excellent * |
| TCO Rank          | 3                           | 2                    | 1                |

\* Redundant pumps and fans provide excellent reliability, on-air service capability

### The GatesAir TCO Calculator

- TCO Calculator:
  - Calculates the total cost of ownership of a transmitter system
  - Compares TCO of a new GatesAir transmitter with your existing transmitter (GatesAir or another brand)
  - Adjust cost of AC power and other factors to match your scenario
  - Calculate total savings over time
  - Estimate break-even period





## TCO – New vs. Previous Gen Tx

## GATES

### Input New Tx Data (Maxiva ULXT)

- Tx Model
- Tx Max power level
- Required power level
- New Tx cost
- Installation cost
- Commissioning cost
- Training cost
- Electrical cost (look up table, or manual entry)
- Currency/ex rate (manual entry)
- Based on some preset criteria, TCO is calculated

#### **New GatesAir** GAT **Transmitter TCO Analysis** SYSTEM VARIABLES User entry cells in pink

| Transmitter Model & Costs:                               |                   |
|----------------------------------------------------------|-------------------|
| Product Series                                           | Maxiva ULXT COFDM |
| Model                                                    | ULXT-10DV/T2/IS   |
| Tx Maximum Output Power                                  | 6,010 W           |
| Required Output Power                                    | 5,800 W           |
| Tx Purchase Price                                        | 170,000           |
| Installation                                             | 6,000             |
| Commissioning                                            | 1,400             |
| Training                                                 | 2,000             |
| Total Cost                                               | 179,400           |
| Energy Costs:                                            |                   |
| Region                                                   | Asia              |
| Country/State                                            | Malaysia          |
| Electricity Price/kW-hr <sup>1</sup>                     | 0.1240            |
| Price/kW-hr (override)                                   | 0.1650            |
| Tx System Efficiency                                     | 37.8%             |
| <sup>1</sup> Multiple sources used - 2010 data, GatesAir |                   |

| 0 | Ρ | E) | ( | & | T | C | С |
|---|---|----|---|---|---|---|---|
|   |   |    |   |   |   |   |   |

| US Dollar |                                                                                     |
|-----------|-------------------------------------------------------------------------------------|
| 1.000     | (Man.                                                                               |
| 28,539    |                                                                                     |
| 214,439   |                                                                                     |
| 328,596   |                                                                                     |
| 471,293   |                                                                                     |
| 613,989   |                                                                                     |
| 756,685   |                                                                                     |
|           | US Dollar<br>1.000<br>28,539<br>214,439<br>328,596<br>471,293<br>613,989<br>756,685 |



## TCO – New vs. Previous Gen Tx

**GATES** 

- Input Existing Tx Data (Maxiva ULX)
  - Tx Model
  - Tx Max power level
  - Required power level
  - Costs can be left as zero for existing tx
  - Electrical cost copied from new tx data
  - Currency/ex rate (manual entry)
- Based on some preset criteria, TCO is calculated



## TCO – New vs. Previous Gen Tx

- Graphical representation
- GatesAir ULXT and ULX transmitters
- New TX Blue
- Old Tx Red
- Loss/savings Green
- Breakeven period ~ 8.4 years







## TCO – New vs. Older Gen Brand x Tx



- Input older generation Tx data
  - Tx Model
  - Tx Max power level
  - Required power level
  - Costs can be left as zero for existing tx
  - Electrical cost copied from new tx data
  - Currency/ex rate (manual entry)
- Based on some preset criteria, TCO is calculated

### Other Brand Transmitter TCO Analysis

#### SYSTEM VARIABLES User entry cells in pink Transmitter Manufacturer Other **Product Series** Standard Series Model T2-5000 **Tx Maximum Output Power** 5,800 W **Required Output Power** 5,800 W Total Purchase Price 0 **Tx System Efficiency** 17.5% **Tx Cooling** Liquid **Tx Room Cooling** HVAC **Total Cost** 0

| sts:                           |  |
|--------------------------------|--|
|                                |  |
| State                          |  |
| Price/kW-hr <sup>1</sup>       |  |
| -hr (override)                 |  |
| Efficiency                     |  |
| rces used - 2010 data. HBC not |  |

Asia

Malaysia

0.1240

0.1650

Energy Co

Region

Country/

Electricity

Price/kW

Tx Systen

oonsible for any errors

|        |   |    |   | _        |     |   |
|--------|---|----|---|----------|-----|---|
| $\sim$ |   | Γ\ |   | Ο.       | ~   | 7 |
| U      | P | с, |   | <u> </u> | L., | L |
| _      |   | _  | - | _        | _   | - |

GA

| US Dollar |                                                                                        |
|-----------|----------------------------------------------------------------------------------------|
| 1.000     | (Man                                                                                   |
| 66,753    |                                                                                        |
| 74,753    |                                                                                        |
| 341,765   |                                                                                        |
| 675,530   |                                                                                        |
| 1,009,295 |                                                                                        |
| 1,343,060 |                                                                                        |
|           | US Dollar<br>1.000<br>66,753<br>74,753<br>341,765<br>675,530<br>1,009,295<br>1,343,060 |





## TCO – New vs. Older Gen Tx

- Graphical representation
- GatesAir ULXT and other brand early gen transmitters
- New TX Blue
- Old Tx Red
- Loss/savings Green
- Breakeven period only 4.6 years







## **Other Benefits Beyond the TCO Calculation**



- In addition to the savings and payback analysis, there are additional potential savings with a new tx:
  - Room Space savings due to higher power density
  - Higher MTBF (less down time, less unexpected site visits)
  - Lower maintenance -longer time between routine site visits
  - Intuitive design easier set up less training required
  - Availability of spare parts in the future versus discontinued model(s)
  - Commonality of spares across platforms





## Maxiva Advantages versus Competition

## **Comparison between GatesAir and Main Competitor**



| Item                               | Main Competitor                        | Maxiva ULXT                       |
|------------------------------------|----------------------------------------|-----------------------------------|
| Size of rack (mm)                  | 2000 x 600 x 1100                      | 1809 x 598 x 1150                 |
| Volume of Rack (m <sup>3</sup> )   | 1.32                                   | 1.24                              |
| Power density - Max power per rack | 13.5kW                                 | 10.8kW                            |
| Broadband                          | No (Several bands, not easy to retune) | Yes (single band 470-750MHz)      |
| Efficiency                         | Up to 38% (claimed COFDM)              | Up to ~ 36% (COFDM)               |
| Weight of PA module                | 28kg                                   | 11kg                              |
| One man PA change ?                | No – 2 people for safety               | Yes                               |
| Weight of PA power supply          | 28kg (it's built into PA module)       | < 2kg (separate unit)             |
| Time to replace PA module          | < 1 Minute (Hot Swap), but 2 people!   | < 30 seconds (hot swap), 1 person |



## Comparison between GatesAir and Main Competitor



| Item                             | Main Competitor                   | Maxiva ULXT                                                   |
|----------------------------------|-----------------------------------|---------------------------------------------------------------|
| Time to replace PA power supply  | Hours (it's built into PA module) | < 20 seconds (hot swap), 1 person                             |
| Power with 1 PA removed (5kW tx) | 64% of max. (5 PA's)              | 81% of max (10 PA's)                                          |
| Max number of tx per rack        | 4                                 | 2                                                             |
| Stand alone exciter              | No, blade architecture            | Yes, easy to access                                           |
| Exciter UPS option               | No                                | Yes, 1 minute full back up, 20 mins frequency processing unit |
| Redundant layered control system | No                                | Yes                                                           |
| Optional GUI Display Panel       | Yes                               | Yes, detachable Wifi connected                                |
| Cost to replace a power supply   | More                              | Much Less                                                     |



## C£m ; n b; n • ã tham gia

Thank you for attending

Martyn Horspool Product Manager, TV Transmission GatesAir, Mason, Ohio USA <u>martyn.horspool@gatesair.com</u> <u>www.gatesair.com</u>