

# ADBS Workshop: Review of Transmitter Total Cost of Ownership

### March 4, 2015

### ABU Digital Broadcasting Symposium 2015

GatesAir's



Martyn Horspool Product Manager, TV Transmission



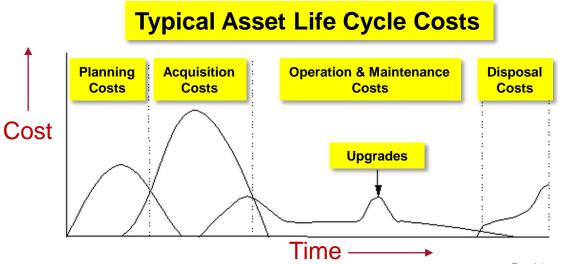
**Connecting What's Next** 

# ADBS Workshop: Review of Transmitter Total Cost of Ownership

Wednesday March 4<sup>th</sup> 14:00 – 15:30

Martyn Horspool Product Manager, TV Transmission GatesAir, USA

### Agenda




- Review/definition of TCO
  - Factors and costs to consider in a TCO analysis
- Transmitter efficiency basics
- GatesAir TCO calculator for Broadcast Transmitters
- Use cases and TCO estimates:
  - New technology DTV tx vs. recent technology DTV tx
  - New technology DTV tx vs. early technology DTV tx
- Other potential cost savings areas
- Review of a transmitter optimized for low TCO:
  - GatesAir liquid-cooled Maxiva ULXT series
- Wrap Up and Q&A



### Total Cost of Ownership - General Definition

Total Cost of Ownership is the total cost of acquisition and operating costs over the asset life cycle. A TCO analysis can be used to gauge the viability of any capital investment



Proprietary and confidential. | 3

# **Factors Affecting TCO**



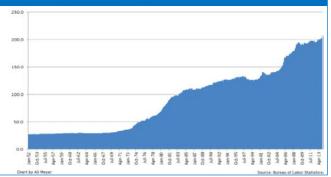
- When purchasing, or replacing a transmitter, Total Cost of Ownership is more important than just the price
- Some of the items that must be considered:
  - Equipment acquisition cost (and taxes/duties, etc.)
  - E Financing/Loan Terms (if applicable)



- Building space requirements (own, lease, purchase)
- Shipping to site, Installation and commissioning costs
- Operational cost of the equipment, including:
  - \$ AC power costs
  - \$ Personnel training
  - S Routine maintenance costs / site visits
  - \$ Repair costs
  - **\$** Upgrades
  - \$ Warranty and other factors



### **Issues Broadcasters are Facing**




#### **Rising Cost of Energy**

- Electricity prices have increased an average of 6.6% per year for the past 5 years
- Projected to continue to rise throughout the world - 60% increase by 2030



#### Electricity Prices Hit all Time High



#### **Carbon Taxes**

 Some countries are imposing taxes based on energy usage, example Australia from 2012-14:

| Financial Year      | Price* (USD \$) |
|---------------------|-----------------|
| 2012–13             | 23.00           |
| 2014                | 24.15           |
| 1 July 2014 onwards | Revoked         |

Source: Clean Energy Regulator - per tonne of emitted CO<sub>2</sub>

# **TCO versus Efficiency**




# TCO is what is really important to a transmission operator:

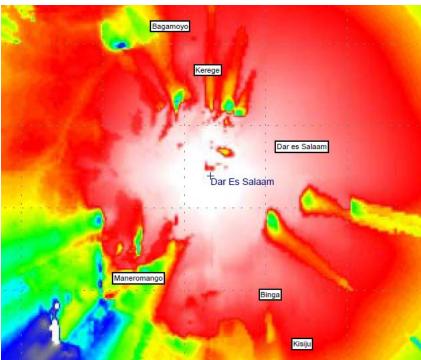
- It's the total cost to own and operate the transmitter system over time
- Includes initial equipment cost and delivery
- Includes the installation/commissioning cost
- Routine and unscheduled maintenance costs
- Repair/replacement and other operational costs

### AC power consumed by the transmitter is important

- However, other factors also affect the system efficiency:
  - AC transformers and voltage regulators
  - Heat load to the room (HVAC costs)
  - RF system losses (often significant)
  - RF feeder losses
  - Non-optimal antenna pattern (next slide)






Proprietary and confidential. | 6

# Wasted energy from antenna



- Coverage and antenna patterns not optimal
- Energy is wasted in large area with no viewers

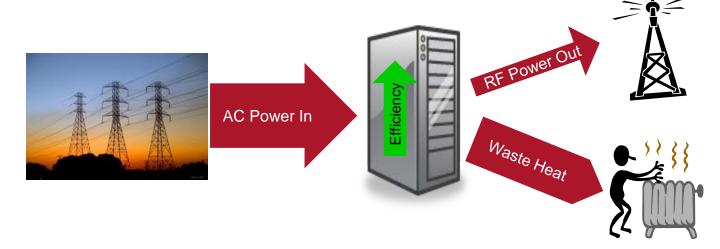




Proprietary and confidential. | 7



**Connecting What's Next** 


# **Transmitter Efficiency**

### **Transmitter Efficiency Basics**



### Efficiency of a transmitter:

• Definition: (RF Power Out / AC Power In) x 100%



# Increased efficiency: reduces power consumed and reduces energy wasted

Proprietary and confidential. | 9

# **Typical Class AB Tx Efficiency**

- GATESAIR
- Example: 5kW Standard Class AB DVB-T2 transmitter
- Efficiency 5/25 x 100% = 20%

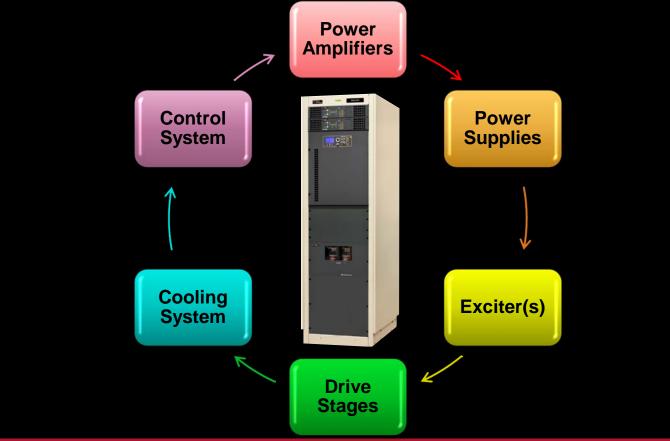



Input power 25kW Waste heat 20kW

Proprietary and confidential. | 10

# **Typical High Efficiency Tx**

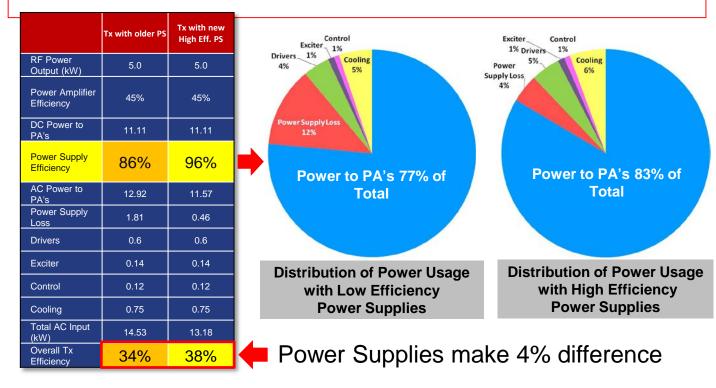



- Example: 5kW Doherty DVB-T2 transmitter
- Efficiency 5/13.2 x 100% = 38%



Input power reduced: (25-13.2)/25 = **47.2%** Waste heat reduced: (20-8.2)/20 = **59%** 

### **Transmitter Efficiency Includes...**

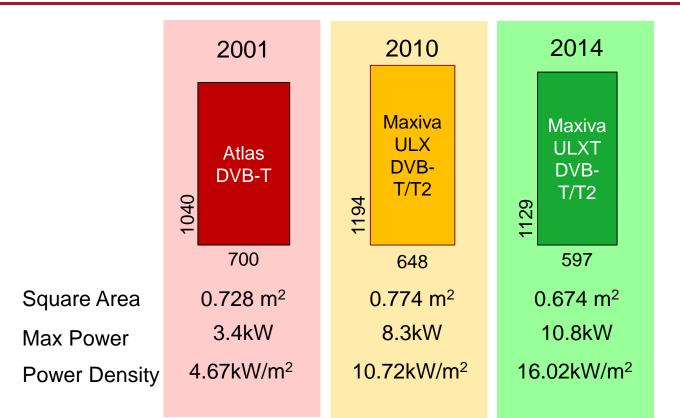







# **Every Component Affects Efficiency**

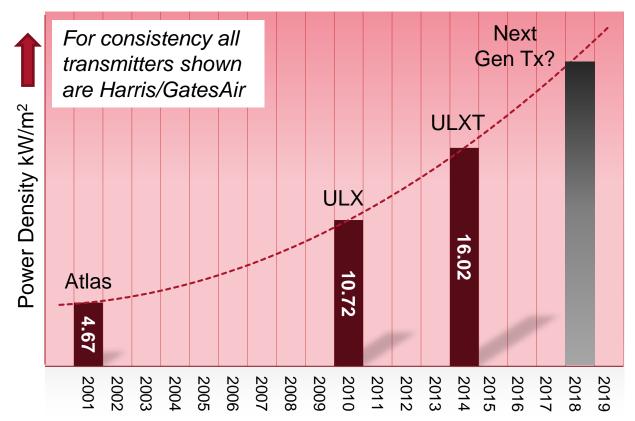
### Effect of power supply efficiency on overall system efficiency




Proprietary and confidential. | 13

**GATES**/IR

### **Space Efficiency Improvements**






Proprietary and confidential. | 14

### **Power Density Trend**

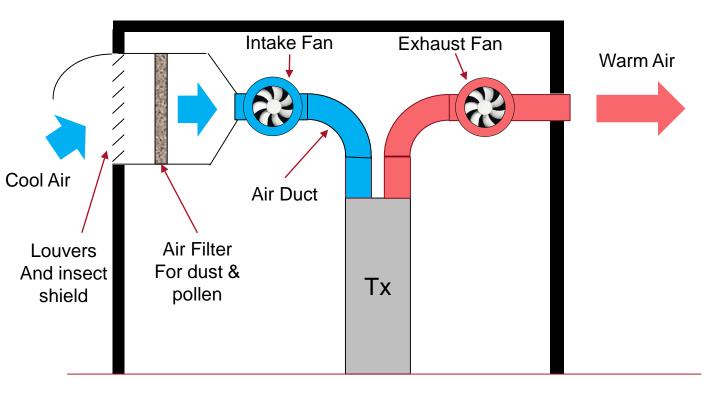




Proprietary and confidential. | 15

# **Cooling and TCO**

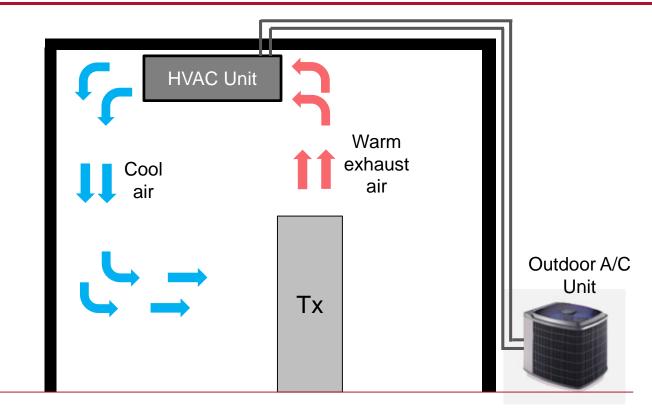



- Three common cooling methods for broadcast transmitters
  - Air-cooled using outside air
  - Air-cooled using inside air and Air-Conditioning
  - Liquid cooling
- Each of these has some advantages and disadvantages



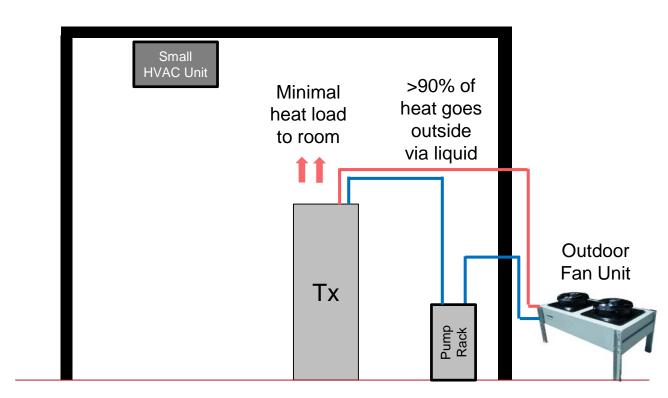


### **Air Cooling – Outside Air**






Proprietary and confidential. | 17


### Air Cooling – Sealed Room HVAC





Proprietary and confidential. | 18





Proprietary and confidential. | 19

### **Cooling Comparison**

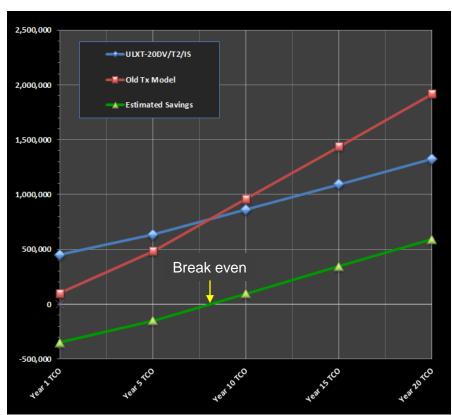


| Item              | Air-Cooled<br>(outside air) | Air-Cooled<br>(HVAC) | Liquid Cooled    |
|-------------------|-----------------------------|----------------------|------------------|
| Energy cost       | Low                         | High                 | Low              |
| Maintenance       | Very High                   | Medium               | Low              |
| Installation cost | High                        | Medium               | Medium/Low       |
| Site visits       | Frequent                    | Infrequent           | Infrequent       |
| Humidity control  | None                        | Excellent            | Excellent        |
| Dust & dirt       | Filter dependent            | Excellent            | Excellent        |
| Reliability       | Medium                      | Medium               | Good/Excellent * |
| TCO Rank          | 3                           | 2                    | 1                |

\* Redundant pumps and fans provide excellent reliability, on-air service capability

Proprietary and confidential. | 20




Connecting What's Next

# GatesAir TCO Calculator for Broadcast Transmitters

### The GatesAir TCO Calculator



- TCO Calculator:
  - Calculates the total cost of ownership of a transmitter system
  - Compares TCO of a new GatesAir transmitter with your existing transmitter (GatesAir or another brand)
  - Adjust cost of AC power and other factors to match your scenario
  - Calculate total savings over time
  - Estimate break-even period



Proprietary and confidential. | 22

not responsible for any errors



#### Input New Tx Data New GatesAir (Maxiva ULXT) GATES Transmitter TCO Analysis Tx Model Tx Max power level SYSTEM VARIABLES User entry cells in pink **OPEX & TCO** Required power level Transmitter Model & Costs: Currency US Dollar New Tx cost (Man Product Series Maxiva ULXT COFDM **Exchange Rate** 1.000 ULXT-10DV/T2/IS 28,539 Installation cost Model Annual OPEX **Tx Maximum Output Power** 6.010 W First Year TCO 214.439 Commissioning cost **Required Output Power** Five Year TCO 5,800 W 328,596 **Tx Purchase Price** 471,293 170,000 Ten Year TCO Training cost Installation Fifteen Year TCO 613.989 6.000 Electrical cost (look up Commissioning Twenty Year TCO 756,685 1,400 table, or manual entry) Training 2.000 Total Cost 179,400 800,000 - Currency/ex rate (manual entry) 600,000 Energy Costs: Region Asia Based on some 400,000 Country/State Malaysia Electricity Price/kW-hr<sup>1</sup> 0.1240 preset criteria, TCO 200,000 Price/kW-hr (override) 0.1650 is calculated n Tx System Efficiency 37.8% 5 10 15 20 <sup>1</sup> Multiple sources used - 2010 data, GatesAir

Proprietary and confidential. | 23

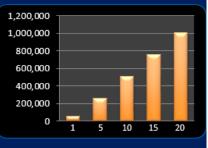


### Input Existing Tx Data (Maxiva ULX)

- Tx Model
- Tx Max power level
- Required power level
- Costs can be left as zero for existing tx
- Electrical cost copied from new tx data
- Currency/ex rate (manual entry)
- Based on some preset criteria, TCO is calculated

### Existing GatesAir Transmitter TCO Analysis

#### SYSTEM VARIABLES User entry cells in pink Transmitter Model & Costs: Product Series Maxiva ULX COFDM Model ULX-5500 **Tx Maximum Output Power** 5,850 W **Required Output Power** 5.800 W Purchase Price 0 Installation 0 Commissioning 0 Training 0 Total Cost 0 iiiii Energy Costs: Region Asia Country/State Malaysia Electricity Price/kW-hr<sup>1</sup> 0.1240 Price/kW-hr 0.1650 **Tx System Efficiency** 20.6% <sup>1</sup> Multiple sources used - 2010 data, GatesAir not responsible for any errors


| Currency         |
|------------------|
| Exchange Rate    |
| Annual OPEX      |
| First Year TCO   |
| Five Year TCO    |
| Ten Year TCO     |
| Fifteen Year TCC |
|                  |

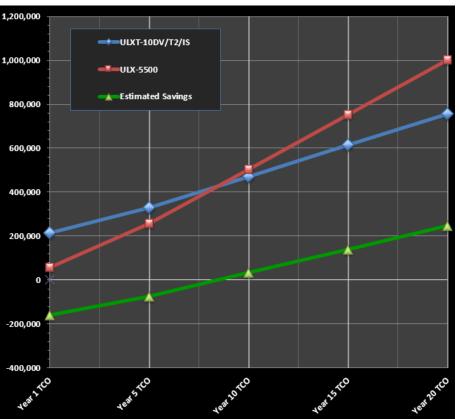
Twenty Y

**OPEX & TCO** 

GATE

|         | US Dollar |      |
|---------|-----------|------|
| Rate    | 1.000     | (Mar |
| PEX     | 49,798    |      |
| тсо     | 56,298    |      |
| тсо     | 255,489   |      |
| тсо     | 504,477   |      |
| ear TCO | 753,466   |      |
| ear TCO | 1,002,455 |      |
| earico  | 1,002,455 |      |






- GatesAir ULXT and ULX transmitters
- Side-by-side comparison
- New vs. previous generation solid DTV state tx
- Breakeven period ~ 8.4 years

| Transmitter Models:     | ULXT-10DV/T2/IS | ULX-5500   | Estimated Savings |
|-------------------------|-----------------|------------|-------------------|
|                         |                 |            |                   |
| Product Series          | Maxiva ULXT     | Maxiva ULX |                   |
| Flouuct Series          | COFDM           | COFDM      |                   |
| Model                   | ULXT-10DV/T2/IS | ULX-5500   |                   |
| Tx Maximum Output Power | 6,010 W         | 5,850 W    |                   |
| Required Output Power   | 5,800 W         | 5,800 W    |                   |
| Purchase Price          | 170,000         | 0          | -170,000          |
| Installation            | 6,000           | 0          | -6,000            |
| Commissioning           | 1,400           | 0          | -1,400            |
| Training                | 2,000           | 0          | -2,000            |
| Total Cost              | 179,400         | 0          | -179,400          |
|                         |                 |            |                   |
| Energy Costs:           |                 |            |                   |
| Region                  | Asia            | Asia       |                   |
| Country/State           | Malaysia        | Malaysia   |                   |
| Price/kWh               | \$0.165         | \$0.165    |                   |
| Tx System Efficiency    | 37.8%           | 20.6%      |                   |
| OPEX:                   | ULXT-10DV/T2/IS | ULX-5500   | Estimated Savings |
| Annual OPEX             | 28,539          | 49,798     | 21,258            |
| Year 1 TCO              | 214,439         | 56,298     | -158,142          |
| Year 5 TCO              | 328,596         | 255,489    | -73,108           |
| Year 10 TCO             | 471,293         | 504,477    | 33,185            |
| Year 15 TCO             | 613,989         | 753,466    | 139,477           |
| Year 20 TCO             | 756,685         | 1,002,455  | 245,770           |
| Breakeven Period        |                 |            | 8.4 Years         |

Proprietary and confidential. | 25

- Graphical representation
- GatesAir ULXT and ULX transmitters
- New TX Blue
- Old Tx Red
- Loss/savings Green
- Breakeven period ~ 8.4 years



Proprietary and confidential. | 26

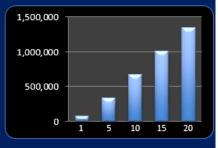


# TCO – New vs. Older Gen Brand x Tx GATES

### Input older generation Tx data

- Tx Model
- Tx Max power level
- Required power level
- Costs can be left as zero for existing tx
- Electrical cost copied from new tx data
- Currency/ex rate (manual entry)
- Based on some preset criteria, TCO is calculated

| TCO Analysis                                            |                          |  |  |
|---------------------------------------------------------|--------------------------|--|--|
| SYSTEM VARIABLES                                        | User entry cells in pink |  |  |
| ransmitter Manufacturer                                 | Other                    |  |  |
| Product Series                                          | Standard Series          |  |  |
| Model                                                   | T2-5000                  |  |  |
| x Maximum Output Power                                  | 5,800 W                  |  |  |
| Required Output Power                                   | 5,800 W                  |  |  |
| otal Purchase Price                                     | 0                        |  |  |
| x System Efficiency                                     | 17.5%                    |  |  |
| x Cooling                                               | Liquid                   |  |  |
| x Room Cooling                                          | HVAC                     |  |  |
| fotal Cost                                              | 0                        |  |  |
| energy Costs:                                           |                          |  |  |
| Region                                                  | Asia                     |  |  |
| Country/State                                           | Malaysia                 |  |  |
| lectricity Price/kW-hr <sup>1</sup>                     | 0.1240                   |  |  |
| Price/kW-hr (override)                                  | 0.1650                   |  |  |
| x System Efficiency                                     | 17.5%                    |  |  |
| <sup>4</sup> Multiple sources used - 2010 data, HBC not |                          |  |  |


Other Brand Transmitter

responsible for any errors



Fifte Twer GATE

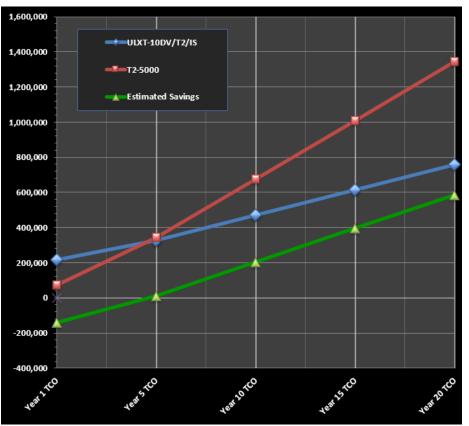
| US Dollar |                                                              |
|-----------|--------------------------------------------------------------|
| 1.000     | (Man                                                         |
| 66,753    |                                                              |
| 74,753    |                                                              |
| 341,765   |                                                              |
| 675,530   |                                                              |
| 1,009,295 |                                                              |
| 1,343,060 |                                                              |
|           | 1.000<br>66,753<br>74,753<br>341,765<br>675,530<br>1,009,295 |



### TCO – New vs. Older Gen Tx



 GatesAir ULXT and other brand transmitter


- Side-by-side comparison
- New vs. early generation solid state DTV tx
- Breakeven period ~ 4.6 years

| Fransmitter Models:     | ULXT-10DV/T2/IS      | Other           | Estimated Savings |
|-------------------------|----------------------|-----------------|-------------------|
| Product Series          | Maxiva ULXT<br>COFDM | Standard Series |                   |
| Model                   | ULXT-10DV/T2/IS      | T2-5000         |                   |
| Tx Maximum Output Power | 6,010 W              | 5,800 W         |                   |
| Required Output Power   | 5,800 W              | 5,800 W         |                   |
| Purchase Price          | 170,000              | 0               | -170,000          |
| nstallation             | 6,000                | 0               | -6,000            |
| Commissioning           | 1,400                | 0               | -1,400            |
| Fraining                | 2,000                | 0               | -2,000            |
| Fotal Cost              | 179,400              | 0               | -179,400          |
|                         |                      |                 |                   |
| Energy Costs:           |                      |                 |                   |
| Region                  | Asia                 | Asia            |                   |
| Country/State           | Malaysia             | Malaysia        |                   |
| Price/kWh               | \$0.165              | \$0.165         |                   |
| Tx System Efficiency    | 37.8%                | 17.5%           |                   |
| OPEX:                   | ULXT-10DV/T2/IS      | T2-5000         | Estimated Savings |
| Annual OPEX             | 28,539               | 66,753          | 38,214            |
| fear 1 TCO              | 214,439              | 74,753          | -139,686          |
| fear 5 TCO              | 328,596              | 341,765         | 13,169            |
| fear 10 TCO             | 471,293              | 675,530         | 204,237           |
| fear 15 TCO             | 613,989              | 1,009,295       | 395,306           |
| Year 20 TCO             | 756,685              | 1,343,060       | 586,375           |
| Breakeven Period        |                      |                 | 4.6 Years         |

Proprietary and confidential. | 28

## TCO – New vs. Older Gen Tx

- Graphical representation
- GatesAir ULXT and other brand early gen transmitters
- New TX Blue
- Old Tx Red
- Loss/savings Green
- Breakeven period ~ 4.6 years



Proprietary and confidential. | 29

GATES

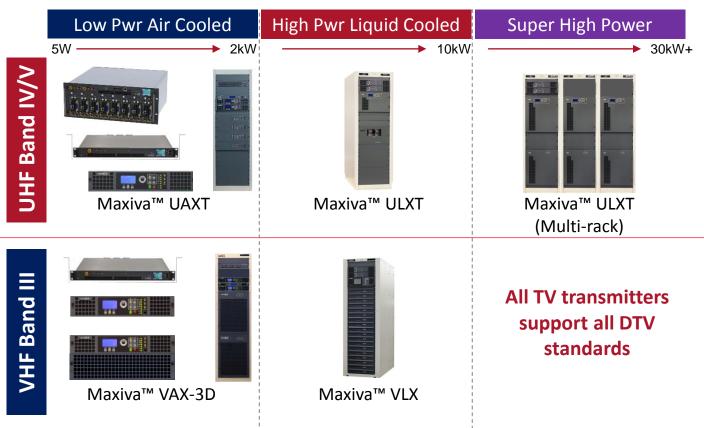
### Manual Data Input on TCO Calc



### The TCO Calculator allows user define inputs

| Additional User Inputs:              |                       |               |                                                                                                 |
|--------------------------------------|-----------------------|---------------|-------------------------------------------------------------------------------------------------|
| System Variables                     | Manual Entry<br>Value | Default Value | Notes                                                                                           |
| Tx Cooling Headroom (0 to 100%)      | 40%                   | 60%           | 0% is exactly sized for the typical tx heat load. Typically headroom should be used, 20% to 80% |
| HVAC SEER Number                     | 11                    | 12            | Varies by make/model - Typically 10 to 16 SEER value                                            |
| HVAC Installation Cost (USD)         | \$5,000               | \$2,500       | May be zero if the existing HVAC can be re-used in an existing plant                            |
| HVAC Replacement Cycle (Years)       | 10                    | 8             | Unit replacement cycle, typically 7 to 10 years                                                 |
| Tx room cooling (HVAC or ducted air) | HVAC                  | HVAC          | HVAC more expensive, especially for air cooled, non-ducted tx                                   |
| Annual Prev Maintenance Visits       | 2                     | 2             | Number of planned maintenance visits to site (assumes unmanned site)                            |
| Average cost per site visit (USD)    | \$2,400               | \$1,200       | Average cost to visit the site, varies depending on employee versus contract, etc.              |

 There are several pages of additional information on the excel sheet that provide the data for the calculations:


Link to Excel Workbook TCO Calculator

### Other Benefits Beyond the Calculator

- GATESAIR
- In addition to the savings and payback analysis, there are additional potential savings with a new tx:
  - Room Space savings due to higher power density
  - Higher MTBF (less down time, less unexpected site visits)
  - Lower maintenance -longer time between routine site visits
  - Intuitive design easier set up less training required
  - Availability of spare parts in the future versus discontinued model(s)
  - Commonality of spares across platforms

### **New Products for Lowest TCO**







#### Connecting What's Next

# Maxiva ULXT

Liquid-Cooled High Efficiency Broadband UHF Transmitter



The Maxiva ULXT is a liquid-cooled UHF high power TV transmitter using latest technology LDMOS RF devices

The design has been carefully optimized for lowest Total Cost of Ownership (TCO).



ULXT Transmitters in Final Test GatesAir Factory, Quincy, IL USA

### Maxiva ULXT – Designed for Low TCO

GATE

### Broadband, high-efficiency design

- High AC to RF efficiency
- Broadband design
- Only one spare power amplifier module is needed to service any ULXT series transmitter in the network. No adjustment, or retuning of any type, is required. = Low TCO

### Future-proof architecture

 Spectrum re-packing... potential channel changes in the future... The broadband ULXT transmitter is ready for such changes, without any need to swap PA modules, combiners, or other components. = Low TCO

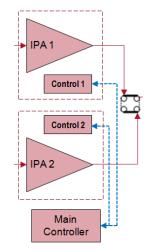


ULXT-20 10.8kW OFDM

## Maxiva ULXT – Designed for Low TCO



### Modular design with small, lightweight, PA modules


- PA module weighs 11kg, far lighter than PA modules from others
- Safer, no 2 person lift per safety regulations
- Much easier to replace, while on the air
- Reduced transportation cost = Low TCO
- Small, lightweight, individual PA power supplies
  - Each PA module has a dedicated power supply.
  - Separate assembly from the PA module, making it much easier to service and replace, if needed.
  - Weigh is less than 2kg (4.4lb) and can be exchanged on-air in less than 1 minute





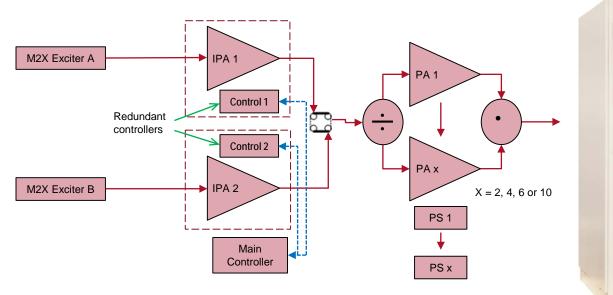
## Maxiva ULXT - Designed for Low TCO

- Cost-effective PA Module and Power Supply
  - Our modular design approach with smaller/lighter replaceable PA's and associated DC Power Supplies are less costly to replace than combined PA/Power supply assemblies that others may use. = Low TCO
- Robust Control System with Redundant
  Controllers = Low TCO
  - Safe operation even if the main control board is defective or needs to be removed for service. An HTML web browser interface and SNMP is included with every transmitter







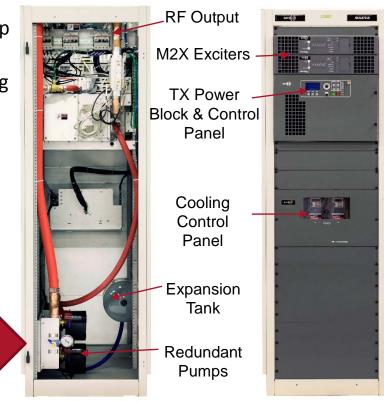



## **Block Diagram ULXT**



6 gana

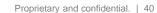
### **10 PA System shown with Dual Drive (option)**




## **ULXT Integrated Pump System**



- With single rack, single power block systems, an integral pump system is available
- Save floor space, save plumbing
- Smaller pumps low power consumption – more efficient!
- External pump Module also available






Proprietary and confidential. | 39

## High Efficiency Ext. Pump Module

- GatesAir design and manufacture
- Optimized for High Efficiency
  - Pumps are speed controlled = Low TCO
- 2 Pumps, with auto/manual changeover
  - Replace a pump during on-air operation!
- Small physical size = Low TCO







## High Efficiency (HE) Heat Exchanger

GATE

- GatesAir design and manufacture
- Dual fans with on-air servicing/replacement capability
- Low noise, with high-efficiency fan blades
- Vertical or horizontal airflow (mounting can be adapted on site for either configuration)
- Speed controlled







### Horizontal Air Flow

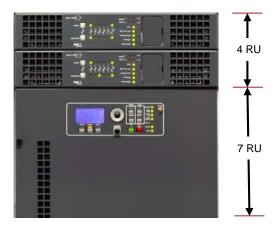
Proprietary and confidential. | 41

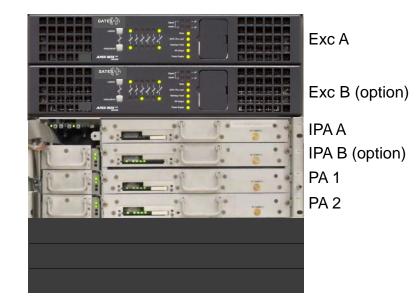
#### Proprietary and confidential. | 42

## Maxiva M2X Exciter

- Field-proven 1,000's shipped
- Software Defined Modulator (Easy to change)
- RTAC Real Time Adaptive linear and nonlinear Correction – standard
- Internal GPS/GLONASS option
- Internal UPS option
  - 1 minute Full exciter power
  - 20 minutes Frequency processing board
  - Eliminates re-boot of exciter after a brief AC power loss (glitch)
- Simple web browser interface
- Can be interfaced to competitive transmitters.
- No manual adjustments
- All Worldwide DVT standards supported





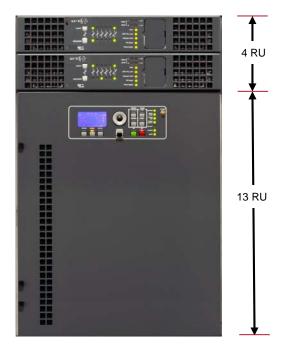



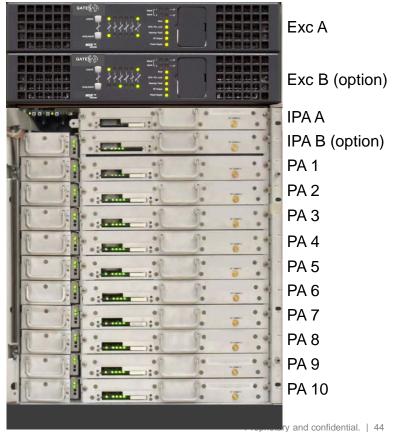



## ULXT-2xx (with dual drive option)







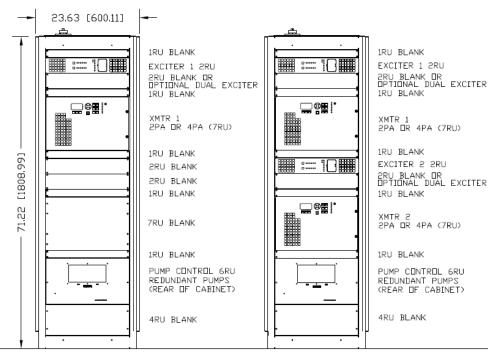


Proprietary and confidential. | 43

GATES/

## ULXT-10xx (with dual drive option)

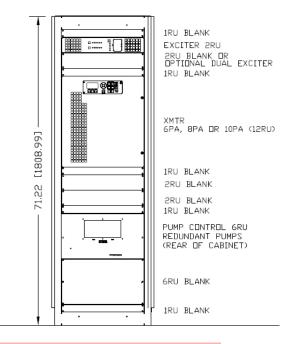
Up to 5.5kW OFDM / 9kW ATSC






**GATES** 




- 1.2kW and2.4kW Systems
  - Single or dual drive
  - 1 or 2 transmitters in 37 RU rack

 Internal Redundant Pumps



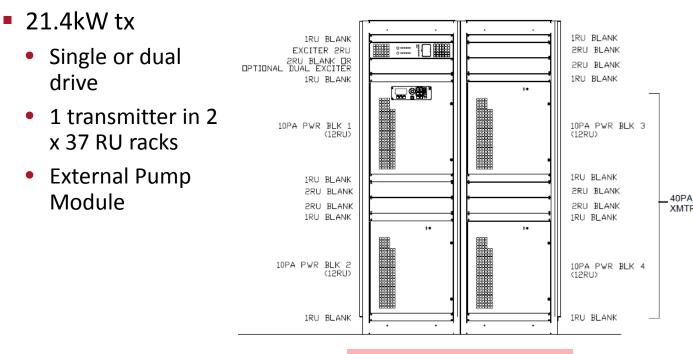
Single 2.4kW Tx in 37RU rack Integrated dual pumps Dual 2.4kW Tx in 37RU rack Integrated dual pumps

- 5.5kW System
  - Single or dual drive
  - 1 transmitter in 37 RU rack
  - Internal Redundant Pumps

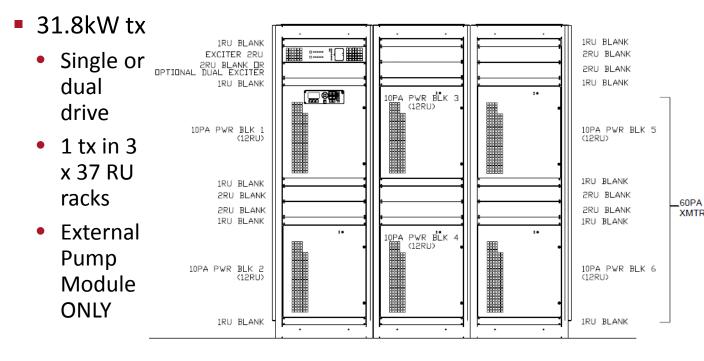


5.5kW Tx in 37RU rack Integrated dual pumps




- 10.8kW System
  - Single or dual drive
  - 1 transmitters in 37 RU rack
  - External Pump Module Or:
- 2 x 5.5kW Systems
  - Each Single or dual drive
  - 2 transmitters in 37RU rack
  - External Pump Module

1RU BLANK 0..... 1 EXCITER 1 2RU 2RU BLANK OR OPTIONAL DUAL EXCITER 1RU BLANK # [\_\_\_\_\_\_] XMTR 1 6PA, 8PA DR 10PA (12RU) 1RU BLANK EXCITER 2 2RU 2RU BLANK OR OPTIONAL DUAL EXCITER 1RU BLANK XMTR 2 6PA, 8PA DR 10PA (12RU) 1RU BLANK


10.8kW Tx in 37RU rack Integrated dual pumps







21kW Tx in 37RU rack Integrated dual pumps



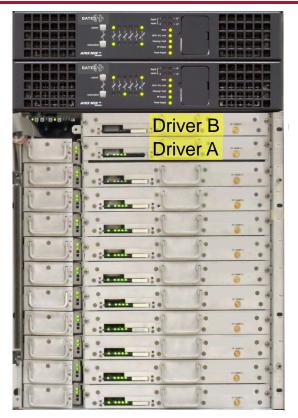
SINGLE DRIVE & OR DUAL DRIVE 37RU CABINET **GATES/**ÌR

ッ

### Maxiva<sup>™</sup> ULXT Model Summary

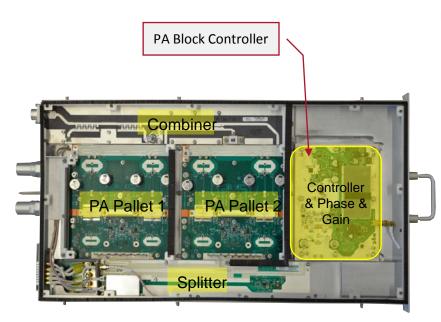


| Maxiva ULXT Series - Weights, Dimensions & Power Levels |             |                   |      |                       |      |                   |      |                       |       |                     |                     |
|---------------------------------------------------------|-------------|-------------------|------|-----------------------|------|-------------------|------|-----------------------|-------|---------------------|---------------------|
|                                                         | # Racks     | Transmitter Width |      | Transmitter<br>Height |      | Transmitter Depth |      | Transmitter<br>Weight |       | OFDM                | ATSC                |
| Transmitter<br>Model                                    | (Rack Size) |                   |      |                       |      |                   |      |                       |       | Pre-Filter<br>Power | Pre-Filter<br>Power |
|                                                         | RU          | mm                | in   | mm                    | in   | mm                | in   | kg                    | lb    | Watts               | Watts               |
| ULXT-2xx                                                | 1 (37)      | 600               | 23.6 | 1,809                 | 71.2 | 1,161             | 45.7 | 238                   | 524   | 1,200               | 1,800               |
| ULXT-4xx                                                | 1 (37)      | 600               | 23.6 | 1,809                 | 71.2 | 1,161             | 45.7 | 276                   | 608   | 2,400               | 3,600               |
| ULXT-6xx                                                | 1 (37)      | 600               | 23.6 | 1,809                 | 71.2 | 1,161             | 45.7 | 314                   | 693   | 3,600               | 5,400               |
| ULXT-8xx                                                | 1 (37)      | 600               | 23.6 | 1,809                 | 71.2 | 1,161             | 45.7 | 404                   | 890   | 4,600               | 7,200               |
| ULXT-10xx                                               | 1 (37)      | 600               | 23.6 | 1,809                 | 71.2 | 1,161             | 45.7 | 433                   | 955   | 5,500               | 9,000               |
| ULXT-12xx                                               | 1 (37)      | 600               | 23.6 | 1,809                 | 71.2 | 1,161             | 45.7 | 472                   | 1,040 | 7,000               | 10,600              |
| ULXT-16xx                                               | 1 (37)      | 600               | 23.6 | 1,809                 | 71.2 | 1,161             | 45.7 | 591                   | 1,302 | 9,000               | 14,200              |
| ULXT-20xx                                               | 1 (37)      | 600               | 23.6 | 1,809                 | 71.2 | 1,161             | 45.7 | 709                   | 1,564 | 10,800              | 17,700              |
| ULXT-24xx                                               | 2 (37)      | 1,162             | 45.8 | 1,809                 | 71.2 | 1,161             | 45.7 | 840                   | 1,852 | 13,400              | 21,100              |
| ULXT-30xx                                               | 2 (37)      | 1,162             | 45.8 | 1,809                 | 71.2 | 1,161             | 45.7 | 999                   | 2,202 | 16,100              | 26,300              |
| ULXT-40xx                                               | 2 (37)      | 1,162             | 45.8 | 1,809                 | 71.2 | 1,161             | 45.7 | 1,445                 | 3,186 | 21,400              | 35,100              |
| ULXT-50xx                                               | 3 (37)      | 1,727             | 68   | 1,809                 | 71.2 | 1,161             | 45.7 | 1,721                 | 3,795 | 26,500              | 43,400              |
| ULXT-60xx                                               | 3 (37)      | 1,727             | 68   | 1,809                 | 71.2 | 1,161             | 45.7 | 1,998                 | 4,404 | 31,800              | 52,100              |
| ULXT-80xx                                               | 4 (37)      | 2,324             | 91.6 | 1,809                 | 71.2 | 1,161             | 45.7 | 2,890                 | 6,372 | 42,300              | 69,700              |


Note: xx = Modulation code

Proprietary and confidential. | 50

## IPA / Drive Chain




- Dual drive includes dual redundant driver modules
- This system provides fully redundant drive for on-air maintenence
- DC power is provided by multiple power supplies for redundancy



## **PA Block Control Redundancy**





- Each IPA module includes the Power Amplifier Block control circuitry.
- PA Block controller is incorporated on the Phase & Gain board.
- Fully redundant PA block control is provided due to redundant drive chain / IPA module architecture

## **High Efficiency PA Module**

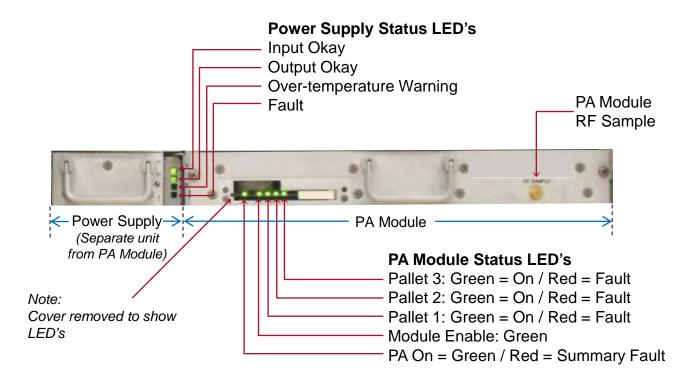


- Power ~ 600W OFDM / 900W ATSC
- High Efficiency
- Liquid cooled
- Light weight: 11kg
  - Easy to remove and service
  - Lower shipping cost
  - DC power supply is separate assembly
- Hot-swap front plug-in design using push-on / pulloff connectors
- Up to 10 PA Modules per Power Block



#### PA Module (Rear)

Proprietary and confidential. | 53


## **High Efficiency PA Module**





### PA Module & PS Status LED's







#### Connecting What's Next

## **High Efficiency DC Power Supply**

- Separate assembly from the PA module
  - Small and light (< 2kg / 4.4lb)
  - Lower replacement cost = Low TCO
- Hot swap, easy replacement in seconds
- One Power Supply per PA module
- IPA's powered by all PA power Supplies (paralleled)
- Wide AC input regulation
- Same power supply as used in other GatesAir

= Low TCO

Consolidate network spares







Proprietary and confidential. | 56

## **Options & Accessories**

- Internal GPS/GLONASS receiver
- GPS/GLONASS antenna and RF cable
- Exciter UPS Provides 1 minute full exciter back-up and 20 minutes for frequency processing circuits
- Dual drive, 1+1 (main/alternate), or N+1 configurations

SFN

- Internal pump system for single power block (up to 10 PA) systems
  - Customer can always opt for external pump system



## **TCO Benefits Summary**



| Feature                                 | TCO Benefits                                                                        |  |  |  |  |  |
|-----------------------------------------|-------------------------------------------------------------------------------------|--|--|--|--|--|
| High Efficiency                         | Reduces electrical energy cost                                                      |  |  |  |  |  |
| Broadband                               | Reduce total spares for a network. Simpler channel change in future                 |  |  |  |  |  |
| Smaller Footprint                       | Less floor space = lower building or rental cost                                    |  |  |  |  |  |
| Lighter PA Modules                      | Easy handling by 1 person (versus 2)                                                |  |  |  |  |  |
| Separate light weight<br>Power Supplies | Replace power supplies separately from PA, Save \$\$ on replacement                 |  |  |  |  |  |
| Simpler PA Modules                      | Less parts = longer MTBF, reduces long term<br>maintenance costs and less down time |  |  |  |  |  |
| Variable speed pumps<br>and HE fans     | Reduces energy used in cool weather. Optimizes electrical energy usage and cost.    |  |  |  |  |  |
| Connecting What's Next                  |                                                                                     |  |  |  |  |  |



#### Connecting What's Next

# Thank You!

Martyn Horspool Product Manager, TV Transmission GatesAir