

DVB-T and DVB-T2 Comparison and Coverage

July 6, 2011

GatesAir's

Rich Redmond Chief Product Officer

Steve Rossiter TV Applications Engineer

DVB-T and DVB-T2 Comparison and Coverage

Always Innovating. Always There.

Welcome

With the growing interest in DVB-T2 as the first planned digital rollout, many customers would like to understand not only the differences but the real world benefits that DVB-T2 can provide over a DVB-T system.

DVB-T & DVB-T2 standards are similar to each other as both use COFDM (Coded Orthogonal Frequency Division Multiplex) modulation but DVB-T2 is distinguished by a number of technical enhancements.

The primary requirements of DVB-T2 were to increase the data carrying capacity by up to 30% over DVB-T and also to improve the flexibility of operation and robustness of reception.

What are the main differences?

Are there real world examples?

1st. Forward Error Correction (FEC)

DVB-T2 uses LDPC (Low density parity-check) codes and BCH (Bose-Chaudhuri-Hocquengham) to protect against high noise levels and interference.

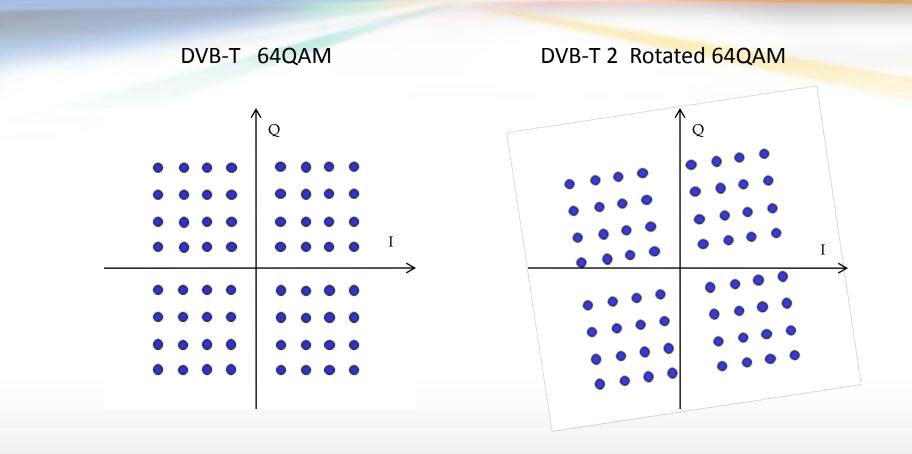
DVB-T uses Convolutional coding and Reed-Solomon to protect against high noise levels and interference.

LDPC and BCH does this more efficiently than Convolutional coding and Reed-Solomon.

DVB-T2 includes additional codes rates 3/5 and 4/5, and removed 7/8 code rate.

2nd. Modulation Modes

DVB-T2 has an additional mode: 256QAM.


The addition of 256 QAM allows for an increased number of bits per data cell. This and the improved FEC (forward error correction) greatly improves the DVB-T2 capacity.

3rd . Rotated Constellations

The next change to the DVB-T2 modes is the use of rotated constellations, this significantly improves robustness of the modulation against loss of data by ensuring that the lost data from one channel component (I & Q component data) can be recovered from the other.

This improves signal robustness against external multipath distortion from geography, buildings and weather.

4th. Guard Interval

DVB-T2 adde	d three additio	onal gua	rd intervals
19/256	19/128	And	1/128
Additional Gu	ard intervals a	dd to th	e flexibility and helps maximize the data payload of
DVB-T2. (note	e a shorter gua	ard inter	rval, such as 1/128, increases payload but decreases
maximum dist	ance in SFN m	ode)	

5th. DFT (Discrete Fourier Transform) Size (also known as FFT , Fast Fourier Transform)

DVB-T used 2k & 8k sizes DVB-T2 has additional flexibility with 1k, 2k, 4k, 8k, 16k & 32k (additional FFT's of 16k and 32k significantly increase payloads)

This refers to the number of carriers per a given bandwidth for an 8 MHz Channel, the normal carrier mode bandwidth is 7.61 MHz. The extended carrier mode bandwidth is 7.71 MHz this increases capacity by 2%.

Normal Mode (only)	Normal Mode	Extended Mode
1k = 853 carriers	8k = 6817 carriers	6913 carriers
2k = 1705 carriers	16k = 13,633 carriers	13, 921 carriers
4k = 3409 carriers	32k = 27,265 carriers	27,841 carriers

For SFN (Single frequency network) we can calculate the distance between transmitters or between direct and multipath signals by using the guard interval and the Mode (Normal or Extended band width)


```
Example: (Guard interval (Gi) = 1/16, 8k Mode, 7.61MHz band width)
```

```
Bandwidth Hz / # of carriers = carrier spacing (cs)
7.61*10^{6} / 6817 = 1.116 kHz
```

```
1/carrier spacing (cs) = Total Symbol Duration(Tu)
1/1.116kHz = 896 us
```

```
Tu * Gi = Guard interval in micro seconds (Gius)
895.8us * (1/16) = 56us
```

Now the distance between SFN (Single frequency network) transmitters or between direct and multipath signals is calculated by:

```
Guard interval * Velocity of light (Vo) = The distance in km 56us * 300*10^3 = 16.8 \text{ km}
```

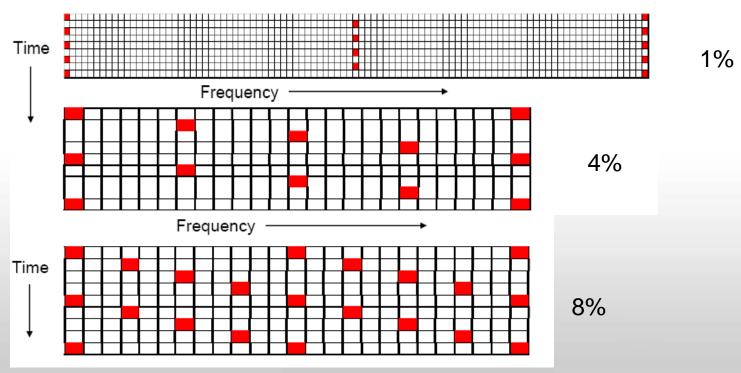

For Single Frequency Networks (SFN)

The Maximum guard interval in DVB-T mode is 224us this gives a maximum distance between transmitters of 67.2 km.

The maximum guard interval in DVB-T2 mode is 532us this give a maximum distance between transmitters of 159.5 km.

uard-interval in Mi	cro Seconds							
		Guard-interval fraction						
FFT	1/128	1/32	1/16	19/256	1/8	19/128	1/4	
32k	28.0 us	112.0 us	223.9 us	265.9 us	447.8 us	531.8 us	N/A	
16k	14.0 us	56.0 us	112.0 us	133.0 us	223.9 us	265.9 us	447.9 us	
8k	7.0 us	28.0 us	56.0 us	66.5 us	112.0 us	133.0 us	223.9 us	

Maximum Distance Between Transmitters in (km) for a single frequency network (SFN)								
		Guard-interval fraction						
FFT	1/128	1/32	1/16	19/256	1/8	19/128	1/4	
32k	8.4 km	33.6 km	67.2 km	79.8 km	134.4 km	159.5 km	N/A	
16k	4.2 km	16.8 km	33.6 km	39.9 km	67.2 km	79.8 km	134.4 km	
8k	2.1 km	8.4 km	16.8 km	19.9 km	33.6 km	39.9 km	67.2 km	



6th. Scattered Pilot

DVB-T used 8% of the total cells (carriers) for scattered pilots

DVB-T2 has additional flexibility with 1%, 2%, 4% & 8% of total cells (carriers) for scattered pilots, this allows for less overhead and increased data efficiency.

Scattered pilots are data cells (carriers) of a known amplitude and phase. The receivers use these to compensate for effects of channel distortions in frequency and time.

BBC Research & Development

7th . Pilot Patterns

DVB-T2 also incorporates the use of 8 different pilot patterns (PP). The chart below shows the PP used for corresponding DFT & Guard interval.

				Guard interva	I			
		1/128	1/32	1/16	19/256	1/8	19/128	1/4
	32k	PP7	PP4 PP6	PP2 PP8 PP4	PP2 PP8 PP4	PP2 PP8	PP2 PP8	N/A
ze	16k	PP7	PP7 PP4 PP6	PP2 PP8 PP4 PP5	PP2 PP8 PP4 PP5	PP2 PP3 PP8	PP2 PP3 PP8	PP1 PP8
DFT Size	8k	PP7	PP7 PP4 PP6	PP8 PP4 PP5	PP8 PP4 PP6	PP2 PP3 PP8	PP2 PP3 PP8	PP1 PP8
	4k & 2k	N/A	PP7 PP4 PP6	PP4 PP5	N/A	PP2 PP3	N/A	PP1
	1k	N/A	N/A	PP4 PP5	N/A	PP2 PP3	N/A	PP1
EN	302 755		SISO Mo	de (Single in Si	ngle Out)			

The goal of the pilot patterns are to minimize the pattern overhead for a given fractional guard interval increasing payload capacity.

8th . Continual Pilots

DVB-T uses 2.6% of the total DBV-T2 uses 0.35% of the total, increasing payload capacity.

9th Physical Layer Pipes

DVB-T2 uses single and multiple physical layer pipes (PLP). A PLP contains a single transport stream and all services in a single transport stream are in a single PLP. Multiple PLPs still have one transport stream per PLP, the advantage is each PLP can have different modulations and coding modes.

PLPO	PLP1
256 QAM	64 QAM
2/3 code rate	1/2 code rate

The higher the bit rate the higher the carrier to noise ratio the less robust the signal

Summary of Differences:

	DVB-T	DVB-T2
Forware error correction (FEC) & Code Rates	Convolutional Coding + Reed Solomon 1/2, 2/3, 3/4, 5/6, & 7/8	LDPC + BCH 1/2, 3/5 , 23, 3/4, 4/5 , & 5/6
Modulation	QPSK, 16QAM, & 64QAM	QPSK, 16QAM, 64QAM & 256QAM
Rotated constellation Mode	N/A	Rotated or None rotated modes
Guard intervals	1/4, 1/8, 1/16, & 1/32	1/4, 19/256 , 1/8, 19/128 , 1/16, 1/32, & 1/12
Discrete Fourier Transform (DFT size)	2k & 8k	1k , 2k, 4k , 8k, 16k, & 32k
Scattered Pilots	8% of total	1%, 2%, 4%, or 8%
Pilot Patterns	N/A	8 Patterns Avalible
Continual Pilots	2.6% of total	.35% of total
		Single or Multiple PLP

Capacity (Bit Rate Mbps)

The maximum capacity of DVB-T is approximately 31.67 Mbps The maximum capacity of DVB-T2 is approximately 50.34 Mbps

CNR (Carrier to Noise Ratio)

The carrier to noise ratio is controlled by the modulation mode and the code rate. With DVB-T2 there has been significant improvements in CNR.

One point to remember with DVB-T and DVB-T2 the lower the transport stream bit rate the lower the CNR, this equals a more robust signal. As you increase the transport stream bit rate the CNR increases. This equals a less robust single.

This means a lower quality signal goes father than a higher quality signal.

Compared to DVB-T, DVB-T2 offers a higher transport stream bit rate with a comparable CNR.

HARRIS

The chart below shows the CNR for DVB-T (8MHz Channel)

			I for BER=2x10 after Reed-So	0 ⁻⁴ after Viterbi Iomon
Modulation	Code rate	Gaussian channel	Ricean channel	Rayleigh channel
	1/2	3,1	3,6	5,4
	2/3	4,9	5,7	8,4
QPSK	3/4	5,9	6,8	10,7
	5/6	6,9	8,0	13,1
	7/8	7,7	8,7	16,3
	1/2	8,8	9,6	11,2
	2/3	11,1	11,6	14,2
16-QAM	3/4	12,5	13,0	16,7
	5/6	13,5	14,4	19,3
	7/8	13,9	15,0	22,8
	1/2	14,4	14,7	16,0
	2/3	16,5	17,1	19,3
64-QAM	3/4	18,0	18,6	21,7
	5/6	19,3	20,0	25,3
	7/8	20,1	21,0	27,9

Gaussian Channel

- directional antenna used
- direct reception

Ricean Channel

- directional antenna used
- multi path reception

Rayleigh Channel

- non-directional antenna
- multi path reception

EN 300 744

The chart below shows the CNR for DVB-T2 (LDPC Long Block Length: 64800 bits)

			Required (C/N) ₀ (dB) for BER = 1×10^{-7} after LDPC				
				deco	ding		
Constel- lation	Code rate	Spectral Efficiency (see note 2)	Gaussian Channel (AWGN)	Ricean channel (F ₁)	Rayleigh channel ^{(P} 1)	0 dB echo channel @ 90 % GI	
QPSK	1/2	0,99	1,0	1,2	2,0	1,7	
QPSK	3/5	1,19	2,3	2,5	3,6	3,2	
QPSK	2/3	1,33	3,1	3,4	4,9	4,5	
QPSK	3/4	1,49	4,1	4,4	6,2	5,7	
QPSK	4/5	1,59	4,7	5,1	7,1	6,6	
QPSK	5/6	1,66	5,2	5,6	7,9	7,5	
16-QAM	1/2	1,99	6,0	6,2	7,5	7,2	
16-QAM	3/5	2,39	7,6	7,8	9,3	9,0	
16-QAM	2/3	2,66	8,9	9,1	10,8	10,4	
16-QAM	3/4	2,99	10,0	10,4	12,4	12,1	
16-QAM	4/5	3,19	10,8	11,2	13,6	13,4	
16-QAM	5/6	3,32	11,4	11,8	14,5	14,4	
64-QAM	1/2	2,98	9,9	10,2	11,9	11,8	
64-QAM	3/5	3,58	12,0	12,3	14,0	13,9	
64-QAM	2/3	3,99	13,5	13,8	15,6	15,5	
64-QAM	3/4	4,48	15,1	15,4	17,7	17,6	
64-QAM	4/5	4,78	16,1	16,6	19,2	19,2	
64-QAM	5/6	4,99	16,8	17,2	20,2	20,4	
256-QAM	1/2	3,98	13,2	13,6	15,6	15,7	
256-QAM	3/5	4,78	16,1	16,3	18,3	18,4	
256-QAM	2/3	5,31	17,8	18,1	20,1	20,3	
256-QAM	3/4	5,98	20,0	20,3	22,6	22,7	
256-QAM	4/5	6,38	21,3	21,7	24,3	24,5	
256-QAM	5/6	6,65	22,0	22,4	25,4	25,8	
		s are approxima ncy does not tak		oss due to signa	alling / synchron	ization /	

Gaussian Channel

directional antenna used

direct reception

Ricean Channel

- directional antenna used
- multi path reception

Rayleigh Channel

- non-directional antenna
- multi path reception

NOTE 2: Spectral efficiency does not take into account loss due to signalling / synchronization / sounding and Guard interval.

NOTE 3: The BER targets are discussed above.

NOTE 4: The expected implementation loss due to real channel estimation needs to be added to the above figures (see clause 14.4). This value will be significantly less than the corresponding figure for DVB-T in some cases, due to better optimisation of the boosting and pattern densities for DVB-T2.

NOTE 5: Entries shaded blue are results from a single implementation. All other results are confirmed by multiple implementations. How does these differences affect DVB-T2 & coverage

Theoretical Comparison

	DVB-T		DVB-T2	
	64 QAM		64 QAM	
	3/4 Code rate	3/4 (Code Rate	
	Gaussian Channel		Gaussian Channel	∆ 3.1 dB
	CNR = 18.0 dB		CNR = 15.1 dB	
strength				
Field st	CNR			* The Noise floor includes transmitter noise, signal path noise, and receiver noise
		CNR		Noise Floor
				Diotonoo in km

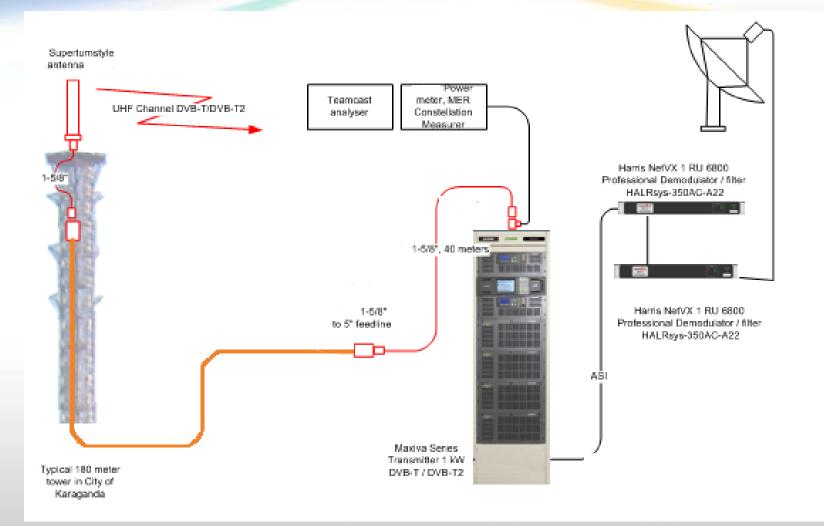
Distance in km

Harris conducted field strength measurements of DVB-T & DVB-T2

This test was conducted in Karaganda, Kazakhstan by Harris Corporation in cooperation with KATZELRADIO of Kazakhstan.

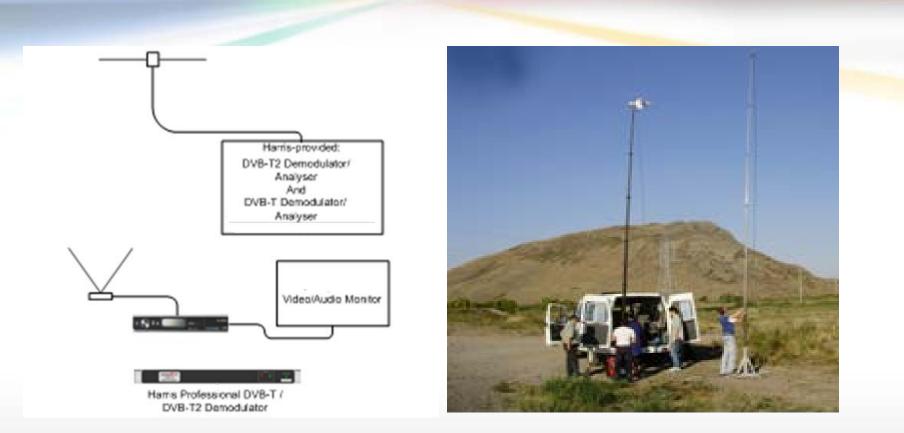
The measurement were taken using a Harris 1kW UAX transmitter with dual exciters one with DVB-T one with DVB-T2, the transmit antenna was a Omni directional pattern Superturnstile antenna with a gain of approximately 9.1dBd at 183 meters above ground level.

The test was conducted at channel 49 (698 MHz), with an ERP of approximately 4.53 kW average.



The following tables show the DVB-T & DVB-T2 system parameter s

Parameter	DVB-T	DVB-T2, VV03	DVB-T2, VV14
Number of Carriers	6817	27841	6913
Guard Interval	1/32	1/128	1/128
Carrier Modulation	64 QAM	256 QAM	64 QAM
Code Rate	3/4	2/3	3/4
Total Data Rate [Mbps]	27.14	40.22	32.54
C/N (Rice) [dB]	18.6	18.1	15.7


The transport stream data used the following parameters.

Transmitter mode	DVB-T, 64-QAM	DVB-T2, 256-QAM	DVB-T2, 64-QAM]
Max.TS data rate	27.1 Mbit/s	40.2 Mbit/s	32.2 Mbit/s	1
Used TS data rate	27.0 Mbit/s	38.7 Mbit/s	32.0 Mbit/s	1
Transport stream standard	MPEG-2	MPEG-2	MPEG-2]
Number of TV channels	5	9	6	
Average data rate per channel	4.3 Mbit/s	4.3 Mbit/s	4.3 Mbit/s	

HARRIS

Field strength measurements were taken at 10m above ground level using one dipole antenna for both DVB-T & DVB-T2.

The second antenna was a yagi at 8m above ground level for the two STB DVB-T & DVB-T2 receivers.

						🗾 🗾 D 5.4Mbps
Parameter	DVB-T	DVB-T2_VV14		General RX Pa	arameters	J.4Wibps
Frequency	698 MHz	698 MHz		Weather	clear/very windy	
FFT Size	8K	8K		RX Antenna:	Dipol	→ D 2.9dB
Carrier Modulation	64 QAM	64 QAM		Factor	26	
Code Rate	3/4	3/4		Gain [dB]	1.16	
Guard Interval	1/32	1/128		Cable loss [dB]	3.3	
Net Data Rate [Mbps]	27.14	32.54	2	RX Filter [dB]	0.7	
C/N (Rice) [dB]	18.6	15.7	>	Total loss [dB]	4	

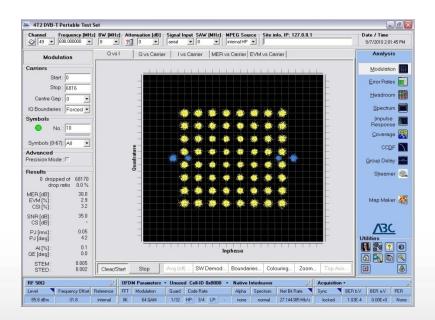
			DVB-T: 27.14 Mbps			DVE	3-T2: 32.54 M	lbps
Test	Site	Distance	Input signal	Field strength	MER	Input signal	Field strength	MER
		[km]	(dBm)	(dBuV/m)	(dB)	(dBm)	(dBuV/m)	(dB)
1	TV Tower	0	-34	103	32,4	-34	103	32,4
2	City Karaganda	1,8		not measured		-35	102	32,6
3	Camping ba	41	-56	81	30	-56	81	311
4	Road Almaty	55,7	-82	55	17.2	-84	53	20,1
5	Topar	34	-76	61	21	-76	61	24,8
6	Abay (centre)	25	-89	48	0	-89	48	18.4
7	Yalta	42	-94	43	0	-94	43	0

MER (modulation error rate) is a measure used to review the performance of the signal transmitted or received. MER is also closely related to CNR (Carrier to noise ratio).

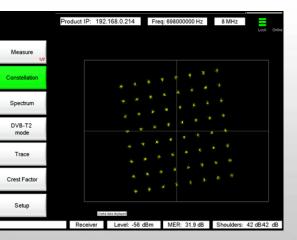
D 1.1dB

DVB-T

30dB


DVB-T

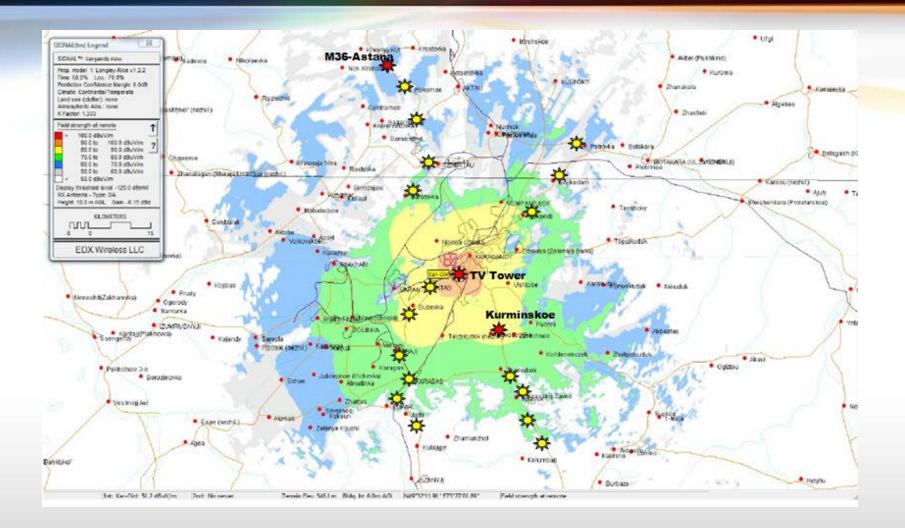
31.1dB


Road Almaty _Camping Bar Site

DVB-T: Distance 41km, MER = 30dB, signal level = - 55.8 dBm

DVB-T2: Distance 41km, MER = 31.1dB, signal level = - 56 dBm

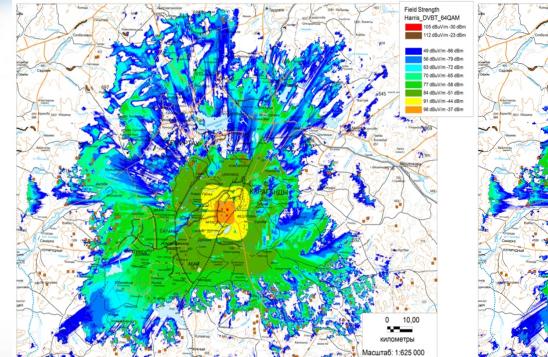
	Product IP: 192.168.0.214	Freq:	698000000 Hz	8 MHz			
Measure 2/2	Input Leve MER	el -56 dBm 31.1 dB					
Constellation		Shoulders 42 dB / 42 dB					
Spectrum	FFT Size Guard Interval	8K 1/32	Code Rate Constellation	3/4 640AM			
DVB-T2 mode	Extended L1 Signaling Constellation	Yes 64QAM	Rotated Constellatio	n Yes PP7			
Trace	T2 Frames OFDM Symbol PLP	2 244 Single	FEC Blocks Number Time Interleaver Typ Time Interleaver Ler	pe One T2-Frame			
Crest Factor	PAPR Transmission mode	ON HIGH	LDPC Size	64K			
Setup							
	Receiver Level: -56	dBm	MER: 31.6 dB S	Shoulders: 42 dB/42 dB			

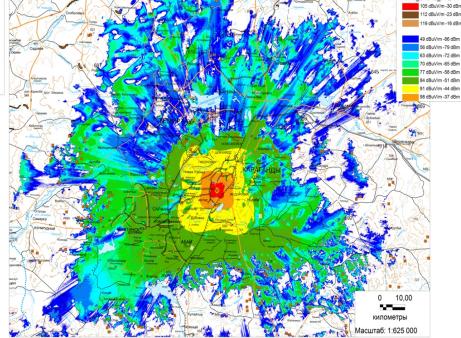

Parameter	DVB-T2	General RX Para	ameters
Frequency	698 MHz	Weather	clear
FFT Size	32K	RX Antenna:	Dipol
arrier Modulation	256 QAM	Factor	26
Code Rate	2/3	Gain [dB]	1.18
Guard Interval	1/128	Cable loss [dB]	3.3
wet Rate [Mbps]	40.22	RX Filter [dB]	0.7
C/N (Rice) [dB]	18.1	Total loss [dB]	4

D 13.08Mbps higher
 data rate when
 compared to DVB-T at
 64QAM

D 0.5dB CNR better
 when compared to
 DVB-T at 64QAM

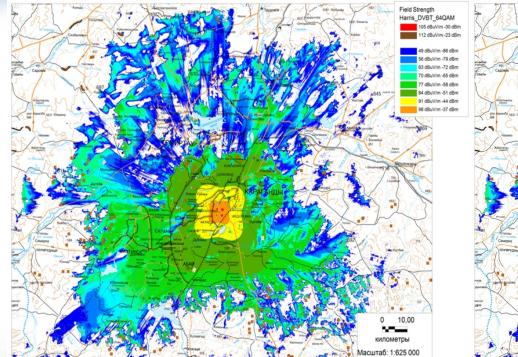
Test #	Site	Site to TX distance	Input signal	Measured field strength	Simulated field strength	MER
		[km]	[dBm]	[dBµV/m]	[dBµV/m]	dB
1	KTR (TV Tower)	0	-34	103	>92	32,4
2	Kurminskoe	23	-48	89	84	33,1
3	M36 (monument)	34	-66	71	56-63	30
4	Uzbek cuisine (cafe)	36,2	-63	74	70	32,3
5	M36 - south 1	42,7	-63	74	63-70	31
6	M36 - south 2	56,4	-84	53	<50	24
7	M36 north - 1	21,5	-54	83	74-80	31,7
8	M36 north - 2	26,5	-55	82	56-62	32
9	M36 north - 3	37,8	-79	58	49-56	25
10	Pokornoe	48,3	-80	57	49-56	24,6
11	M36 - Astana	55,6	-64	73	56-63	31,4
12	Karabas	29,7	-76	61	77	26,1
13	Topar	35,5	-92	45	49	24
14	Abay (entrance)	22,3	-68	69	84	30,6
15	Petrovka	44	-87	50	49	24
16	Baikadam	32,4	-92	45	<50	0
17	Kokpekty	22,2	-77	60	63	25,6




Software coverage estimation and field strength points used in previous 256QAM charts, Longley Rice study 50% of time, 70 % of locations

Harris DVBT2 64QAN

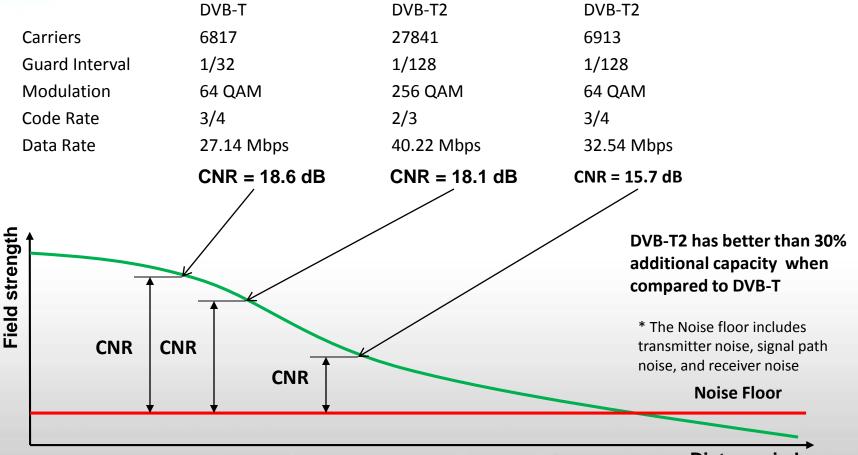
Coverage Plot Comparison




Software coverage estimation for DVB-T system, Modulation 64QAM, Data rate 27.14 Mbps

Software coverage estimation for DVB-T2 system, Modulation 64QAM, Data rate 32.54Mbps

Coverage Plot Comparison


Software coverage estimation for DVB-T system, Modulation 64QAM, Data rate 27.14 Mbps

Software coverage estimation for DVB-T2 system, Modulation 256QAM, Data rate 40.22 Mbps

Conclusion

DVB-T2 significantly increases coverage & data rate over DVB-T This enables broadcasters to more efficiently use their spectrum & deliver more information to their customers.

Distance in km

Questions?